无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
教学反思的概念和内容篇一
对于教师来说,反思教学就是教师自觉地把自己的课堂教学实践,作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。进一步充实自己,优化教学,并使自己逐渐成长为一名称职的人类灵魂工程师。以下是我在上了函数的概念之后的一点反思:
这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。
这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。
函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。
本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。
我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。
总体来说,这堂课较好地使学生在学习中完成了“引起关注————激发热情————参与体验”的过程,是一堂比较成功的课。
遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。
(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。
(2)根据学生的接受能力可将内容安排两节课的教学。
教学反思的概念和内容篇二
对于必修1函数概念的教学活动中,我有以下反思:
函数是高中数学的重要研究问题,贯穿整个高中数学的学习。然而同学们对初中的函数概念的理解根深蒂固。要使他们接受从集合角度所定义的函数概念很难。本身这个概念很抽象,叙述起来很冗长,同学们读了一遍又一遍始终不解其意,我便采用启发式教学,就像学习语文一样,让大家总结函数的本质为:“函数是一种对应关系”再启发得到:“函数是两个非空数集之间的对应关系”,又得到“函数是两个非空数集之间满足一对一或多对一的对应关系”,再加上细节性的定语。大多数同学顿时觉得茅塞顿开,明白清楚。我又加之几个实例判断是否为函数并分解其理由,同学们更加清楚明了。
通过这个概念的学习,我从中得到启示:要使学生数学思维生动活泼对抽象概念的学习不能照本宣科,必须对知识重组,揭示概念的`本质,使学生乐于学习它,并运用它。
这是我这节课后的一点小反思,也算是以后授课的一点小启示。
教学反思的概念和内容篇三
1、在教学中,要突出了讨论无理数和实数的概念,实数是在有理数的基础上中以扩充的,定义了无理数之后,有理数和无理数统称为实数。对实数的比较大小和运算两个问题。可以通过类比由有理数得到。
2、由于分类的标准不同,实数分类的方法可以有多种。在这主要介绍了两种分类方法:一种是按有理数和无理数分类;一种是按实数的大小分类。无论采取哪种分类方法,关键是不重不漏。通过教学,向学生渗透对概念进行分类的原则:一是要选定一个属性为标准,选择的标准不同,分类的结果也不同,但每次分类不能同时选用两个以上的不同属性作标准;二是不越级进行分类,就是说分类的结果应该是它的邻近的'种类概念,而不能越级,如把实数分为整数、分数和无理数,就是越过了“有理数”这一级,这是不正确的。正确的科学分类经常采用二分法,即在每一次分类时,将被分类的所属概念以某一属性为标准,分成且仅分成互不相容的两个矛盾关系的两种概念,并且逐级地这个分下去。二分法不仅是全面地、系统地掌握要领的重要的分类方法,而且也是系统地分析问题和解决问题的有力方法。
教学反思的概念和内容篇四
我在教学梯形概念时,曾过于简单地处理教学过程,不顾学生的认知水平,将定义从教材中抽出来孤立地讲解。结果,在变通练习中,学生的计算正确率仅为18%。虽然我课讲得很轻松,但学生学得很累,整个教学活动中,学生都没有多大兴趣,只是到下课铃声响起学生才露出喜悦之情。我反思整个教学过程,感到概念教学有时还必须追溯根源,教师要了解学生的已有认知。我在课下与学生交谈,了解到他们平时习惯把上下底边称为上底边和下底边,这一认识是他们的自身体验,也是学生形成真正概念的“生长点”,我就从这里入手,研究梯形概念,重新设计梯形概念的教学过程。
我准备好各种梯形纸片和一支红色粉笔,通过“类比”和“变式”讲完梯形概念后,举起标准方位上的梯形纸片,问:“谁能告诉老师梯形的底边在哪儿?”学生纷纷说那最下面的边和最上面的边是底边,我肯定了学生的回答,平行的一组对边就是梯形的上下底边。接着,我请学生注意,将手中的梯形旋转90度,然后静静观察下面的动静。此时,课堂里早已躁动起来,学生按捺不住了,不时挪动着位置,你看我,我望你,好像在寻找什么。他们一定在想:上下底边呢?我深深明白现在这些孩子在想些什么,便及时抓住学生这一心理契机,用红色粉笔在底边着力地点了两点,然后将纸片缓缓转动起来,并指出:点了红点的边就是底边。学生观察着,领悟着,终于说出平行的一组对边就是梯形的上下底边。我很高兴地说:“大家回答得真好!平行的一组对边就是梯形的上下底边,与梯形的位置状况毫无关系。”学生兴奋了,笑容在每个学生脸上荡漾着——片刻后,我引导学生反思,为什么刚才我们没想到呢?我仿佛听到学生在自言自语:“因为我们一直认为底边一定是在下面或上面,当梯形旋转90度后,我们就以为上下边是底边,但又不平行,所以就认为没底边了。”这是推动学生思维趋向批判性和深刻性的反思过程,我们很多老师却忽视了它。随后,我顺水推舟地完成了梯形上下底边的教学,并让学生叙说上下底边的概念。
整个教学过程,就这样在一片活跃紧张的气氛中完成了……
变通练习抽样调查,正确率达95%以上,这是多么大的反差啊!
由这个教例我想到:概念教学要处理好教材、教学情境、学生已有认知三者的关系。因为教材中许多概念平时学生已接触过,并且有了初步认识,然而这些认识往往是模糊、片面的,甚至是错误的。如果我们在讲这些概念之前,到学生中走一走,访一访,找到学生“认知停靠点”和“思维展开点”,看一看这些认识是怎么形成的,距离正确的认识还有多远,我们的讲解就会有的放矢,也会激起学生的兴趣,使学生更容易掌握教学内容。
教学反思的概念和内容篇五
函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。继而,通过例题,思考、探究、练习中的`问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。
在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点p,测出点p的坐标,观察点p的坐标横坐标与纵坐标的变化规律。使学生看到函数描述了变量之间的依赖关系,即无论点p在哪个位置,点p的横坐标总对应唯一的纵坐标。由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档