作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?又该怎么写呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
力的合成与分解的教案篇一
1.分解因式
总体说明
因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.
本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.
一、学生知识状况分析
学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.
学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.
二、教学任务分析
基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。因此,本课时的教学目标是:
知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念.
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法.
数学能力:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想.
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力.
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力.
情感与态度:
让学生初步感受对立统一的辨证观点以及实事求是的科学态度.
三、教学过程分析
本节课设计了六个教学环节:看谁算得快——看谁想得快——看谁算得准——学生讨论——反馈练习——学生反思.
第一环节看谁算得快
活动内容:用简便方法计算:
(1)=
(2)-2.67×132+25×2.67+7×2.67=
(3)992–1=.
活动目的:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式.
第二环节看谁想得快
活动内容:993–99能被哪些数整除?你是怎么得出来的?
学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?
活动目的:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备.
注意事项:由于有了第一环节的铺垫,学生对于本环节问题的理解则显得比较轻松,学生能回答出993–99能被100、99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式.
第三环节看谁算得准
活动内容:
计算下列式子:
(1)3x(x-1)=;
(2)m(a+b+c)=;
(3)(m+4)(m-4)=;
(4)(y-3)2=;
(5)a(a+1)(a-1)=.
根据上面的算式填空:
(1)ma+mb+mc=;
(2)3x2-3x=;
(3)m2-16=;
(4)a3-a=;
(5)y2-6y+9=.
活动目的:在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.
注意事项:由于整式的乘法运算是学生在七年级已经学习过的内容,因此,学生能很快得出第一组式子的结果,并能很快发现第一组式子与第二组式子之间的联系,从而得出第二组式子的结果.
第四环节学生讨论
活动内容:
比较以下两种运算的联系与区别:
(1)a(a+1)(a-1)=a3-a
(2)a3-a=a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.
辨一辨:下列变形是因式分解吗?为什么?
(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2
活动目的:通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止.
注意事项:学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成.
第五环节反馈练习
活动内容:
1、看谁连得准
x2-y2.(x+1)2
9-25x2y(x-y)
x2+2x+1(3-5x)(3+5x)
xy-y2(x+y)(x-y)
2、下列哪些变形是因式分解,为什么?
(1)(a+3)(a-3)=a2-9
(2)a2-4=(a+2)(a-2)
(3)a2-b2+1=(a+b)(a-b)+1
(4)2πr+2πr=2π(r+r)
活动目的:通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏.
注意事项:从学生的反馈情况来看,学生对因式分解意义的理解基本到位.
第六环节学生反思
活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
活动目的:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的观点有一个初步认识.
注意事项:从学生的.反思来看,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认识.
巩固练习:课本第45页习题2.1第1,2,3题
思考题:课本第45页习题2.1第4题(给学有余力的同学做)
四、教学反思
传统教学中,总是先介绍因式分解的定义,然后通过大量的模仿练习来强化巩固学生对因式分解概念的记忆与理解,其本质上是对因式分解的概念进行强化记忆.
在新课程的教学中,对因式分解的记忆退到了次要的位置,它把因式分解作为培养学生逆向思维、全面思考、灵活解决矛盾的载体.在教师的指导下,学生通过因数分解类比出因式分解,对学生进行类比的数学思想培养,由整式的乘法与因式分解的对比,对学生的逆向思维能力进行培养,也使得学生对于因式分解概念的引入不至于茫然.
尽管新旧两种教法的对比上,新课程的教学不一定马上显露出强劲的优势,甚至可能因为强化练习较少,在短时间内,学生的成绩比不上传统教法的学生成绩,但从长远目标看来,这种对数学本质的训练会有效地提高学生的数学素养,培养出学生对数学本质的理解,而不仅仅是停留在对数学的机械模仿记忆的层面上.
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习的情感态度与价值观上发生深刻的变化.
力的合成与分解的教案篇二
在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。根据新课程标准要求和学生的起点能力,本节课的具体目标有两个,一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。
在新课引入的过程中,我以 “ 问题情境 —— 建立数学模型 —— 解释、应用与拓展 ” 的模式组织课堂教学。对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用完全平方进行因式分解。整堂课教下来我觉得自己做的比较好的'几点是 :
1 、突显特点。这节课的重点是运用完全平方公式分解因式,而完全平方式的判定是关键。所以我比较重视完全平方式特点分析,应用。尤其强调完全平方式标准模式的书写,这也是学生思维过程的暴露,有利于中等及中等以下学生对新知识的掌握 , 提高学生解题的准确率 , 对提高那些偏理科的数学尖子生的表达能力也有好处。对以后灵活掌握用配方法解一元二次方程,求代数式最值等知识有正向迁移作用。有利于学生思维能力的发展。
2 、自主训练。我以先引导学生分析多项式特点,再让学生尝试分解因式的方式完成例题教学。对课本上的练习题放手让学生自己完成,体现了以教师为主导,以学生为主体,及时反馈,及时巩固教学方式。
3 、及时归纳。根据初二学生认知特点,教学中我给予学生及时的多归纳,总结,使学生掌握一定的条理性和规律性,有利于学生的创新和发展。如完全平方式特点形象概括(口诀记忆法,结构的对称美),因式分解步骤概括(一提二套三查),以及换元思想,配方法的提出。
4 、重视动态生成。教学中我发现学生们思维很活跃,接受能力比较强,我对例题教学作了及时调整,由师生合作完成改为先引导学生观察、分析多项式特点,再让学生自主完成解题过程。
5 、根据学生的心理特点和实践认知水平,努力为他们创造成功的条件。在教学过程中采用类比、探索式教学,辅以讲练结合,师生互动,总而言之,努力营造出平等、轻松、活泼的教学氛围。从新课标评价理念出发,抓住学生语言、思想等方面的亮点给予帮助、鼓励、提高学生学数学,用数学的信心。
不足之处:
1 、探索用于因式分解的完全平方公式及特点分析时,没有把握好时间,这是导致后面时间不够的原因之一。
2 、课堂预设没有完成,根据学生特点,我设计了这样一个教学环节:根据完全平方式特点,请学生构造一个完全平方式,并分解因式。当学生基本完成后,组织学生同桌交流,交流方式为:请把你的构思告诉同伴,先一个听,一个评。然后调换角色。由于时间没把握好,导致本环节没有完成。
3 、语言不够简练,说得太多,没有注意纠正学生书写错误。学生作业过程中有两处出错,我没发现。
4 、公式中的字母 a,b 可以表示数 , 单项式 , 多项式的广泛意义只是让学生体验,没有让学生开口表达。
以上是我上这节课的一些教学反思,在以后的教学中我会更多的结合学生的学习情况,多发现学生在学习方面的优势和不足,因材施教,更好的提高课堂效率。
力的合成与分解的教案篇三
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
力的合成与分解的教案篇四
素质教育背景下的`数学课堂教学要以学生为主体,从学生的实际情况出发,关注、关心学生的成长,创设良好的课堂学习氛围,激发学生的学习兴趣,教会学生学会学习,学会思考,使学生成为学习的主人。学生是变化的,课堂教学也是变化无穷的,而我们老师在课堂上的角色如何充当,如何处理突发问题,下面以《因式分解》一节课的反思谈谈“以学生为主”自己的一些感悟:
这是《因式分解》的第一节课,内容为因式分解的概念和用提取公因式进行分解因式,这一节课的教学目的是让学生掌握因式分解的概念和学会用提公因式法进行因式分解,在学生对因式分解概念有了初步的了解后,我例举了5a+5b,5a—20b,5am+5bm,4am2+8bm,5am3—25bm2等进行因式分解,一直例举了5a(x+y)+5b(x+y),a(x—y)+b(x—y),到这里学生还勉强接受,再例举下去,对于a(x—y)+b(y—x)与a(x—y)2—b(y—x)2等就模糊了,这连续的例举让学生们有点招架不住了。自己认为这样做感觉不错,但课后我认真总结与反思这一节课,觉得有以下不足:
落实得不够。特别是在老师出题这一环节上,我想在学生自己自学理解了公因式后,应让学生自己探究,将全班分为若干个小组,在各个小组中要求学生自己编出能用提公因式法分解的题目,再根据学生所编的题目让别的同学说出公因式,分解因式,然后各小组选出最有代表的一题参加小组竞赛活动,看看哪个小组出的题能难倒对方。我想这样做既改变了教的方式,又能促进学生学习,变被动学习为主动学习,不但增加学生学习的兴趣,而且培养学生的竞争能力,这样学生学习才不会感到枯燥,学习才有味。
对我们农村学校的学生,他们学习的积极性不高,基础不是很好,在刚刚接触因式分解这个概念后,学生还理解不够,基础也不够扎实,对于公因式是单项式的容易接受,但提出了多项式是公因式的分解,对于部分的学生来说是有点接受不了,所以这节课的效果不是很好。我想应在课前根据班级、学生的实际情况进行备课,从学生的学习接受知识和乐于学习的角度去备好每一节课。
我们总认为每一节课都要按一定的.步骤和程序进行,这样才觉得完美,其实不然,关键是如何让学生更好的学会每一个知识点,老师讲清每一个知识点,而一节课的时间是有限的,我们再根据学生、课堂的实际情况去处理好问题与时间,这节课完成不了的内容下节课再讲,可以让学生带着问题走出教室,让学生多思考、多动手、多动口,把学习的主动权还给学生,这也充分体现出以学生为主的思想。
我们老师应走出演讲者、唱主角的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者。学生能自己做的事教师不要代劳,我们教师应在学生的学习的过程中,在恰当的时候给予恰当的帮助与引导,让学生在不断的探索过程中获得知识,体验获取知识的乐趣。
力的合成与分解的教案篇五
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.
四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.
初中数学三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
圆和圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为r和r,圆心距为d,那么:
两圆外离dr+r;
两圆外切d=r+r;
两圆相交r-r;
两圆内切d=r-r(rr);
两圆内含dr)。
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。