人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
换底公式教学视频篇一
教学反思:
在整个教学的实施过程中,我突出了对问题的设计,主要以问题引导学生的思维活动,教学中,结合学生的思维发展变化不断追问,使学生对问题本质的思考逐步深入,思维水平不断提高.同时给学生提供自主探究的机会,加强了引导学生通过自己的观察、操作等活动获得数学结论的过程、符合新课标倡导的积极主动、勇于探索的学习方式,结合本节课的教学,我反思如下:
二倍角的正弦、余弦、正切公式这一节内容在本章中是一重点。首先,二倍角公式是和角公式的特殊形式,同时,二倍角公式又可以和后面的半角公式联系起来,所以二倍角公式的地位是显而易见的。其次,二倍角公式的应用也比较广,在三角函数式的计算、化简、求证及简单应用中都会涉及到。最后,二倍角公式的证明本身就是一种化归的数学思想。所以,作为《二倍角的正弦、余弦、正切公式》的第一个课时,我着重从二倍角的正弦、余弦和正切公式正用、逆用两方面来设计这节课。
本节课公式的推导相当简单,我充分利用了学生的课前预习,让学生课前预习了两角和的正弦、余弦、正切、同角三角函数基本关系式,练习了一个“如果将两角和的已知sin,cos,求sin2,cos2,tan2的习题,又引导学生思考:正弦、余弦、正切公式中的角、都令=,结果如何?”从而引发了学生对二倍角公式的初步认识,为本节课的教学创设了一个很好的开端。
本节课的难点在于公式的灵活应用。这对于对于学生的思维及能力是相当大的挑战。毕竟,公式本身就是符号的集合,抽象是其主要特征。当然也正因为其抽象性,才具有广泛的迁移性及应用。为此在例题及习题的设计上我遵循了从简到繁,由易到难,层层推进,遵循了学生认知规律,再加上老师的适时总结收到了较好的效果。
在课堂教学过程中,我始终将教师的指导教学和学生的自主学习有效地结合起来,我基本上圆满完成了本节内容的教学任务。课堂教学中我十分注重讲练结合,提示和点评都能够结合学生的实际情况进行。为了调动学生的积极性,发挥学生的主体作用,从一上课开始,到推导公式,几道例题及习题始终把解决问题的机会留给学生.引发学生积极思考,积极参与。在每一部分又分别强调学法指导,一题多解,引导学生思考、联想,举一反三,适时总结,使得教师的主导作用和学生的主体作用十分融洽.学生没有因为公式教学而感到枯燥、厌学,反而会全身心地投入到课堂上,基本上达到了我们的.教学目的。
2、语言表达上有待进一步提高,一方面是因为紧张,但更多的还是在备课过程中对语言的组织上存在欠缺;另外从学生的角度来说,学生灵活运用公式及计算能力也有待加强。
3、时间安排十分欠缺,前面讲的有点慢,而后面由于时间关系讲的又十分仓促,出现了前松后紧的情况,导致例4和习题4的学习效果较差。
换底公式教学视频篇二
数学课程标准中关于公式的教学目标是:会推导公式(a+b)(a-b)=a2-b2,了解公式的几何背景,并能简单计算。教材在安排两数和乘以两数差公式时,先根据多项式乘法法则对公式进行推导,再通过求一个几何图形的面积引出公式,最后安排两道例题。
教学中,我基本按教材顺序进行教学,大多数同学也都掌握了公式的特点,会有公式进行计算,但从学生作业反馈的情况来看,效果并不好。事后通过个别辅导等,方才使学生会用平方差公式进行计算。
反思这节课的教学,我觉得有以下三个环节未处理好:
一是直接引出图形,未能注重情景的创设。如果先出示一组计算题:如:(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),限定时间让学生用多项式乘法法则进行计算,然后启发学生观察这组计算题的.特点,引导学生自己发现平方差公式,再通过拼图验证公式的正确性。那么,学生就能明白我们为什么要学习了平方差公式。从激发学生的学习兴趣考虑,此举效果可能更好。
二是在公式得出后,我急于代替学生说出公式的结构特点,而不是让学生自己独立说出,此举不利于加深学生对公式结构的掌握,在后来的学习中也就难以灵活运用。同时也不利于培养学生的口头表达能力。
三是例题的选取缺乏遇见性。虽然学生会用平方差公式求(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),但对于一些变式题,学生则感到难以下手,比如(b+a)(-b+a),(3b+a)(a-3b),(-0.5x-3y)(0.5x+3y),(a+b-c)(a-b+c),(0.5x-3y)2(0.5x+3y)2等。如果在进行例题教学时,我除了能注重发挥传统教学的长处,还能适当进行一题多变的训练,那么学生遇到上述习题,或许会不觉得那么难了。
换底公式教学视频篇三
乘法公式是《整式的乘除》一章的重要内容,也是今后学习数学的重要工具,要学好这部分,除了要注意:
1、掌握公式的几何意义比如完全平方公式。
2、注意掌握公式的结构特点,掌握公式的结构特点是正确使用公式的前提。如平方差公式的结构特点是:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。掌握了这些特点,就能在各种情况下正确运用平方差公式进行计算了。
3、注意公式中字母的广泛意义,乘法公式中的字母既可以代表任意的数,又可以代表代数式,只有注意到字母所表示的意义的广泛性,就能扩大乘法公式的应用范围。
对课本中的教材必须要看的更深也更广,所以我就在学生对乘法公式的基础知识掌握的还不错的基础上专门提出了今天的内容,可以说是带点专题性质也可以说是课本知识的一种延续,让学生还要注意乘法公式的逆用,不仅要掌握乘法公式的正向应用,还要注意掌握公式的逆向应用,乘法公式均可逆用,特别是完全平方公式的逆用就是配方,配方是一种很重要的数学思想方法,它的应用非常广泛。还要注意乘法公式的变形,要善于对公式变形的应用,在解题中充分体现应用公式的'思维灵活性和广泛性。同学们在运用公式时,不应拘泥于公式的形式而要深刻理解、灵活运用。在课堂的反映中,我深刻的感到这个这样的教学内容虽然脱离了课本,但是又和课本内容紧密联系非常受学生欢迎,主要表现在学生的注意力相当集中,尽管没有让更多的同学表达他们的思路,但是让同学们的思维都动了起来,当有些同学有了自己的思路之后,都能大胆地发表自己的见解,或者在老师的启示下能够产生新的解题方法,但是我也发现对部分领悟能力较弱的孩子有一定的困难,需要老师把解题过程能够全部的展现出来。
换底公式教学视频篇四
在整个教学的实施过程中,我突出了对问题的设计,主要以问题引导学生的思维活动,教学中,结合学生的思维发展变化不断追问,使学生对问题本质的思考逐步深入,思维水平不断提高.同时给学生提供自主探究的机会,加强了引导学生通过自己的观察、操作等活动获得数学结论的过程.符合新课标倡导的积极主动、勇于探索的学习方式,结合本节课的教学,我反思如下:
二倍角的正弦、余弦、正切公式这一节内容在本章中是一重点。首先,二倍角公式是和角公式的特殊形式,同时,二倍角公式又可以和后面的半角公式联系起来,所以二倍角公式的地位是显而易见的。其次,二倍角公式的应用也比较广,在三角函数式的计算、化简、求证及简单应用中都会涉及到。最后,二倍角公式的证明本身就是一种化归的数学思想。所以,作为《二倍角的正弦、余弦、正切公式》的第一个课时,我着重从二倍角的正弦、余弦和正切公式正用、逆用两方面来设计这节课。
本节课公式的推导相当简单,我充分利用了学生的课前预习,让学生课前预习了两角和的正弦、余弦、正切、同角三角函数基本关系式,练习了一个“如果将两角和的已知sin,cos,求sin2,cos2,tan2的习题,又引导学生思考:正弦、余弦、正切公式中的角、都令=,结果如何?”从而引发了学生对二倍角公式的初步认识,为本节课的教学创设了一个很好的开端。
本节课的难点在于公式的灵活应用。这对于对于学生的思维及能力是相当大的挑战。毕竟,公式本身就是符号的集合,抽象是其主要特征。当然也正因为其抽象性,才具有广泛的`迁移性及应用。为此在例题及习题的设计上我遵循了从简到繁,由易到难,层层推进,遵循了学生认知规律,再加上老师的适时总结收到了较好的效果。
在课堂教学过程中,我始终将教师的指导教学和学生的自主学习有效地结合起来,我基本上圆满完成了本节内容的教学任务。课堂教学中我十分注重讲练结合,提示和点评都能够结合学生的实际情况进行。为了调动学生的积极性,发挥学生的主体作用,从一上课开始,到推导公式,几道例题及习题始终把解决问题的机会留给学生.引发学生积极思考,积极参与。在每一部分又分别强调学法指导,一题多解,引导学生思考、联想,举一反三,适时总结,使得教师的主导作用和学生的主体作用十分融洽.学生没有因为公式教学而感到枯燥、厌学,反而会全身心地投入到课堂上,基本上达到了我们的教学目的。
2、语言表达上有待进一步提高,一方面是因为紧张,但更多的还是在备课过程中对语言的组织上存在欠缺;另外从学生的角度来说,学生灵活运用公式及计算能力也有待加强。
3、时间安排十分欠缺,前面讲的有点慢,而后面由于时间关系讲的又十分仓促,出现了前松后紧的情况,导致例4和习题4的学习效果较差。
换底公式教学视频篇五
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的`能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
换底公式教学视频篇六
通过“数值转换机”的练习,让学生在计算中验证“完全平方公式”。学生在这堂上快速地做完这些问题,并在老师的引导下,归纳出完全平方公式,并完成了相关的基础练习。本节课的任务顺利完成。
两节课后,心里很虚。第一个教学班,侧重于面积与代数恒等式的关系验证,但学生的基础练习不够,尤其是学困生较多的班级,他们对公式的熟练还是要靠大量的习题才能巩固,所以下一课时,还花了不少功夫重新详解计算。第二个教学班,强调了数值的计算,掌握了公式的计算技巧,但学生少了逻辑思维的推敲,此课他们成了“数值计算器”了,他们与第一个教学班的公式认识深度肯定不同,当回头给他们补充面积的表示,他们直嚷听不懂,但他们解题的能力又比第一教学班稍胜一点。矛盾啊!到底是要“素质”还是要“分数”啊!尤其是我们学校的学生们。
不过第一种的方法在后面的教学尝到了一些甜头。在勾股定理的公式推导中,第一个教学班的'学生很容易就接受了,并且对不同的图形推导方式,他们都以极大的兴趣投入了计算、推导。这是让我最想不到的。
通过这次的课堂试验比较,给我最大的感受是,我们要相信学生的能力,即便他们不强,但是通过适当的引导,多样化的手段,他们还是能达到我们的目标。对于学困生的教学,我们不光着眼于基础与技能的训练,还可以给他们一点拓展的机会,有时会给我们带来惊喜。