在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
乘法分配律教学反思苏教版篇一
学生在前面的学习中已经学习了一些有关运算律的知识,对加法交换律、结合律、乘法交换律、结合律有一定的了解和认识,这些都为本课的学习奠定了基础。本课的教学环节和前面学习运算律的教学基本相似,所以学生也有一定的学习方法和经验,所以乘法分配律的归纳和揭示还是比较顺利的。我重点是结合练习帮助学生进一步的认识乘法分配律的意义以及它与其他运算律的区别。特别是对几个数字的观察和比较以及等式两边的式子分别表示的意义等,通过这样的引导,加深学生对乘法分配律含义的理解,为后面的简便运算的学习奠定基础。
相对于其他运算律的简便运算,应用乘法分配律进行简便运算,学生在实际的运用方面还是有一定困难的。教学中我是分层进行教学的。首先安排的是最基本,学生直接根据乘法分配律就可以直接进行简便运算。在这个环节,我主要是通过练习加深学生对乘法分配律的理解和运用,特别是逆向的运用。接着,在练习环节进行一定的拓展和变化,通过观察、比较等方式,引导学生发现算式间的联系,从而能够灵活的运用运算律。在这个环节,我发现部分学生仍然是在逆向的运用上出现了一些问题。这可能也与学生的思维定势有关系。
乘法分配律教学反思苏教版篇二
核心提示:
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成。
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。
新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
初步的教学设想是这样的:
首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。
在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。
教学目标定位是
(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
乘法分配律教学反思苏教版篇三
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:
一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
二、让学生根据自己的爱好,选择自己喜欢的书,出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。由学生计算总价列式,到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。
乘法分配律教学反思苏教版篇四
乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。
如何帮学生建立数学模型,展现乘法分配律的性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。
为此,我改进了教学方式——切换读法,化难为易。
步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。
步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。
步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。
步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。
实践证明,渗入思维的读法比机械复读教学效果要好。
乘法分配律教学反思苏教版篇五
乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。
上课教师先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。
结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。
这样的导入让学生充满了求知的欲望,激发了学习的热情。
出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。
讨论:
1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?
2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生a:我发现左边括号外的那个数,写到右边都要乘两次。
生b:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的思维能力。
总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。
乘法分配律教学反思苏教版篇六
“乘法分配律”的学习是在学习了乘法交换律和乘法结合律之后进行的,对于乘法分配律的理解和应用上都比前两个运算定律更有难度,学生在新课学习和知识的应用的过程中思路还比较清晰,但是在作业的过程中出现的好多问题,让人感觉孩子并没有对定律有真正意义上的理解。如:(40+4)×25,有时,只用40×25,后面只加上4就行了,还有的把这道题目改成了连乘题,根据孩子出现的问题和练习中出现的困惑,我认真的设计的这节练习课。
第一,理清思路,,建构完整的知识体系。在本节课中,我和学生们一起回顾了乘法的几种运算定律,比较每种运算定律的字母公式,来区分乘法交换律、乘法结合律和乘法分配律之间的外形结构特点,引导学生发现,乘法结合律是几个数连乘,而乘法分配律是两数的和乘一个数或者是两个积的和.从运算符号上我们很快就可以找到它们的不同。乘法交换律和乘法结合律都只有乘号,而乘法分配律有不同级的两种运算符号。
第二,优化练习题,实行精练。针对学生在乘法分配律学习后在理解上的困难,及乘法分配律在练习形式上的多变,我找出课本、课堂作业本以及一些课外辅导资料上的乘法分配律的计算题,把他们进行概括总结,把不同类型的乘法分配律的方法进行练习,讲解。让学生对不同的乘法分配律的解决方法都进行尝试,帮助理解,加深记忆。
第三,一题多法。例如25×44,学生在利用乘法分配律拆分其中一个数据的时候,有多种方法,有的学生把25拆成20+5,有的是拆了40+4,还有的把25×44转化成25×4×11,这些方法都可以,让学生分辨出每一种方法所运用的运算定律,从而加深学生对知识的认识和理解,在此基础上,选出最佳方案。
乘法分配律的练习实在是多种多样,变幻无穷,要想更好的掌握,关键还是要理解,需多练.
乘法分配律教学反思苏教版篇七
教材分析:
乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
2.在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。
3.本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。
教学反思:
乘法分配律是第三单元的一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。
北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。
总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。