在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
解决问题的策略画图教学反思篇一
今天,学习了《解决问题的策略》一课,对于一一列举的方法,有许多学生都在无意中用过,但是却没有把它系统化,甚至根本就没有正视它。换句话说,学生基本都认识列举的方法,这节课的学习过程主要是学生思考方法的整理过程。根据这一特点,教学中我在以下方面下了工夫。
心理学指出,小学生思维发展的特点是由以具体形象思维为主要形式,逐步过渡到以抽象思维为主要形式。五年级学生虽然已具备了一定的抽象思维能力,但碰到问题的第一反应终究是形象化的。就比如本课例一,学生首先想到的是把围的样子摆出来或画出来,空间能力比较强的学生是直接想出来。于是,我组织学生从摆小棒入手,在摆的过程中逐步发现规律、研究规律。在小棒已显得可有可无的基础上再引导学生屏弃小棒,共同进行方法的优化。整个过程充分体现教为学服务,每一步的推进既是课堂的需要也是学生的需要,学生主宰了课堂,课堂也发展了学生。
思维是贯穿数学学习始末的一项活动,故数学被喻为思维的体操。关注学生的思维发展也即了解了学生的学习情况。因此,课上我尽量做到让学生多说,说说自己的思考过程,说说对于问题的看法,根据学生的发言中的反馈信息合理安排接下来的环节。
但是,最后的巩固环节处理得很不到位。首先试一试时三份作业一起呈现,学生比较起来无从下手,未能找到各个的特点。而接下来几题由于时间关系交流得比较仓促,没有发挥应有的作用。
解决问题的策略画图教学反思篇二
上完这一节课本节课,我趁热打铁,立刻进行反思。本节课我努力体现解决问题这类课型的我们老师应该坚持做哪些工作,我个人思考不管是新课程理念还是老课程,也不管是什么版本,数学应该有其本质的东西,那就是给学生思考的时间和空间,引导学生会思考,促进学生去悟懂里面的道理。正是基于这样的理念和思考,所以在课中我三个招
1、注重给学生充分思考的时间,我等着学生慢慢领悟其中的道理,课堂上照顾全体同学,决不是看到有同学举手,就像看见了一个救星一样,马上请这位同学回答,他回答对了,就代表都会了,这样做就以个体代替了整体,会造成课堂上个别学生的表演。
2、注重审题,我感觉对于一个问题,能够正确全面的审题对于能否解决问这个问题至关重要,所以新授部分,我注意让学生多次读题,并且把重要的信息让学生重读,并且说说自己的理解,之所这样就是想培养孩子仔细审题、全面审题的能力。通过课堂效果来看,起到了预期的效果,在学生正确全面的审题以后,解决问题就水到渠成了。
3、注重学生在独立思考后的讨论交流,课堂上我是先让学生独立思考,思考后再进行交流,而不是抛出一个问题后就直接让学生讨论交流,我感觉那样的讨论交流一般是比较流于形式的,是浅层次的交流,是没有深度的。因为每个同学还有经过自己的思考张口就说,看上去很热闹,往往是:自说自话,简单的想法。通过课堂效果来看,这样的处理有着实实在在的效果,对于发展学生的思维能力是非常有帮助的。
1、没有很好的调动起学生的积极性,提前一天和学生交流的时候,学生很活跃,所以今天在会场上我想也应该是这样的,其实不然,学生是紧张的,而我还是以昨天的表现来应对今天的局面,显然是不妥的,课前也没有进行充分的交流。
2、课堂的练习设计层次性不强、趣味性不高,所以感觉课堂上后面的练习学生积极性不够高,显得沉闷和呆板。
3、课堂语言不够生动和活泼,也不够精炼。
以上三点都是我在今后的教学中需要下大力气进一步改进的地方。
解决问题的策略画图教学反思篇三
与上节课相比,本课的例题中的条件和问题更加繁杂了,出现了三种不同的果树,行数每行的棵数都不相同,这需要学生根据所要求的问题,整理解决该问题所需要的不要条件,排除无关条件的干扰。学生在研究的同时更加体会到列表整理的妙用。
在实际的解决问题中,本节课的问题其实并不十分复杂,只要能够准确地列出所需的条件学生自己是能够解决的,只是在列式之后解答时需要强调运算的顺序。比较而言本节课学生掌握得要比上一节课好得多。在想想做做的第3题由于出现的步骤相对多一些,学生列综合算式有些困难。
1、例题是用三步计算解决的简单实际问题。先让学生认真读题,找出题中的条件,由于题中的条件较多,要引导学生找出这些条件的对应关系,然后根据题中的问题,找出相关的信息整理成表格。启发学生根据整理好的表格表达自己解决问题的思考过程,从而体会到“列表整理”的策略价值。
2、“试一试”也是用三步计算解决的实际问题,所不同的是,例题是求两积之和,这里是求两积之差。但思考的方法是相同的。教学时,可以让学生在解答例题的基础上,独立列表整理条件,再在小组里交流自己的思考过程,然后再独立解答。
3、练习中通过让学生列表整理,找出相关的信息解决问题,可以放手让学生独立去解决。教师不必一一解释了。
由于在第一课时让学生自己设计表格进行整理,在今天的学习中,学生能根据问题很快找出与问题相关的信息进行整理,效果比较好。在交流中、在学生的讨论中都能使学生体会到:提供的信息较多,如适当整理则有利于更清楚地分析数量关系,列表整理条件有利于发现数量关系,找出解决问题的方法。尤其是在组织学生交流中,启发学生根据整理好的表格表达自己解决问题的思考过程,以突出“列表整理”的策略价值。还是有学生较懒惰表述的`太省略,意思表达不清。
解决问题的策略画图教学反思篇四
一、故事引入,初步感知
[电脑出示]曹冲称象图片
曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?
今天我们就来研究如何用替换的策略解决问题。[板书课题]
生活中有哪些地方是用替换来解决问题?
二、出示问题,探索运用
读题,从题目中获得哪些信息。
你是怎样理解小杯的容量是大杯的这句话?[电脑出示]
学生说两种替换的过程。为什么要把大杯换成小杯?
四人小组合作。
要求1、画一画,选一种替换方法画出替换过程。
2、说一说,应该怎样替换,并且如何计算。
小组展示汇报。
怎样检验结果是否正确?学生口头检验。
解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?
我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。
三、拓展应用,巩固策略
学生独立完成。并说出想的过程。
为什么不把饼干替换成牛奶来考虑?
读题,从题目中获得哪些信息?
与例1相比,有什么不同的地方?
每个大盒比小盒多装8个这句话你是怎么理解的?
怎样替换?
学生独立完成并核对。
四、小结全课,优化策略
解决问题的策略画图教学反思篇五
六年级下册第六单元《解决问题的策略—转化》第一课时。是在学生已经学习了用画图和列表,以及列举、到推、替换和假设等策略解决问题的基础上进行教学的。教学时我直接出示例题图,让学生感觉到原来的图形面积难以直接比较,从而想到把图形分割之后通过平移和旋转转化成长方形后再比较,这样容易比较出大小。这部分内容放手让学生独立思考与尝试转化的过程,使学生完整地体验转化的应用过程。接着在教学完例1后,通过对过去曾经运用转化策略解决问题的回顾,让学生感受转化策略是一个得到广泛应用的重要策略。 让学生在明白转化的实质是化复杂为简单、转未知为已知之后,就是如何具体运用转化的策略解决问题。
在运用转化策略时,关键是针对每一个具体问题如何进行转化,为了让学生体验转化策略方法的多样性,设计了一些练习,一是空间与图形领域的练习,这部分内容在计算图形的面积与周长时主要采用分割法,通过平移与旋转实施转化的策略解决问题,这是解决复杂图形面积或周长问题时经常用到的方法。二是数与代数领域的练习。练习中的题目都是比较特殊的转化方法,可以在学生将异分母分数加法转化为同分母分数加法的基础上,介绍借助图形的计算方法,让学生知道根据算式可以转化为数形想结合的计算,从而找到另一种解答方法。在练习中让学生通过这些变化的图形和变化的问题提高解决问题的灵活性,选择最优的转化方法,充分感受转化策略的价值。
通过教学反思自己的教学行为,我感觉:
1、例1的教学太过仓促,怎样用“转化”这一策略去把不规则的图形转变为规则图形。学生不是很明白。
2、在回顾学生以曾经运用转化策略解决问题的例子时,学生合作交流学习的方法不适合,应该采用讲授法将如何转化说得再明确一些,,然后具体说说是怎样运用“转化”这一策略,运用“转化”后有什么价值。
3、练习题的处理也缺乏指导。没有站在学生的角度考虑问题。
解决问题的策略画图教学反思篇六
12月11日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜“可能是10只怎样的船”。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行, 培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
课后经过汪主任的评点,使我对教材有了更深层次的领悟。特别是对假设这个策略,最后提炼出经典的4个词“假设——比较——调整——检验”4个步骤,这是我课上没有概括出来的。虽然我是按照这几步来做的。但没有概括出来,学生仅仅停留在解决问题上。学生还处于模仿状态。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个“学”来勉励自己:“教——学也;始于自学——学也;终于教人,——学也。”
解决问题的策略画图教学反思篇七
本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把未知的问题变成已知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
为此我在教学中设计了以下几个环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。并请学生拿出准备好的练习纸进行转化验证。
第二环节是"回顾运用,感知转化",在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到了转化的好处。在练习中,我把练一练和练习十四第2题的前两小题作为及时练习内容,使学生初步学会运用转化解决问题,巩固知识的同时体验成功的喜悦,激发继续学习的热情。第三环节是“观察思考,深入转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。
课前设想总是美好的,但在实际的操作中,总会出现一些问题。虽然整节课的设计都是围绕让学生知、探索、体验“转化”的策略,但上完这一课后,我感觉没有达到预期的教学目标。整节课下来,学生的收获偏重于教材和我所提供的一些关于转化的问题,学生的创造性没有得到很好的发挥,很难再以后的学习中把转化这一策略应用到新的问题上面。主要问题是学生对“转化”策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法?……很多时候都是作为教师的我在“唱独角戏”,一个人在那儿说着“转化”的优点,而学生并没有所想的那样对转化有认同感。并且课堂上我对学生的启发提问,知识与知识之间的过渡语言,对学生回答完问题的评价语言显得贫乏苍白。
总之就本节课而言,增强学生的转化意识,提高学生转化的技能,让转化思想扎根学生心田,这样学生的思维才能更灵活开放。符合就是成功,不符合就是失败,我会在以后的教学中不断改进。
解决问题的策略画图教学反思篇八
教学目标:
1、使学生初步认识并理解“替换”的策略,学会根据题中两个数量之间的倍数关系或相差关系,用“替换”的思想解决实际问题。
2、使学生在解决实际问题过程不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:掌握用“替换”的策略解决问题的方法。
教学难点:感受“替换”策略对于解决特定问题的价值。
教学过程:
一、创设情境,初步感知替换策略。
1、动画引入,学生续讲《曹冲称象》的故事。从曹冲是用“与大象同样重量的石头”换“大象”,引出“替换”的话题。
2、举出现实生活中替换的例子。通过为小明调换商品初步感知替换策略。
3、揭示课题,引入例1。
二、合作交流,探索学习替换策略。
(一)分析题意,弄清条件与问题。
1、你是怎样理解“小杯的容量是大杯的1/3”这句话的`?
(二)组织学生合作交流,先议一议怎样用替换的策略解决问题?再尝试列式计算。
(三)汇报尝试情况,归纳用替换的策略解决问题的方法。指名学生汇报自己的想法,板演出算式,并讲一讲每步式子的意义。
借助媒体演示总结:
1、大杯换成小杯或小杯换成大杯的依据是什么?
2、把大杯换成小杯:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?也就是说9个小杯容量是720毫升,那就可以先求出每个小杯的容量。
3、把小杯换成大杯:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?720毫升果汁可以倒3个大杯。可以先求出每个大杯的容量。