人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
最小公倍数第一课时教学反思篇一
1、一个数最小的倍数是它的本身,没有最大的倍数。
2、一个数倍数的个数是无限的。
3、怎样找一个数的倍数?
其次,在引入的环节,我用学生喜欢的故事和动画来展示:在美丽的洪泽湖边上有一个小渔村,村里住着一老一少两个渔夫。今年,他们从4月1日一起开始打鱼,并且每个人都给自己定了一条规矩。老渔夫说:“我连续打3天鱼要休息一天。”年轻渔夫说:“我连续打5天鱼要休息一天。”有一位城里的朋友想趁他们一起休息的.日子去看望他们,那么在这个月里,他可以选哪些日子去呢?你会帮他把这些日子找出来吗?听了这个故事之后,学生积极性很高。
学生对公倍数的个数是有限的还是无限的,使用省略号方法学生没有掌握好。如:6和9的公倍数后面要用省略号,30以内6和9的公倍数后面要不用省略号。
最小公倍数第一课时教学反思篇二
核心提示:今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。教学练习四第8题。提醒学生:每...
今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的'最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。
教学练习四第8题。提醒学生:每隔6天去一次是指7月31日以一,下一次训练日期是8月6日;要求他们两次相遇的日期,实际上就是求6和8的最小公倍数。
最小公倍数第一课时教学反思篇三
教学实录:
一.公倍数的意义
学生思考后回答。
生:能铺满边长6厘米的正方形,因为边长6的正方形面积是36平方厘米,长方形面积是6平方厘米,36÷6=6个,用6个正好铺满。
师:那边长8厘米的正方形为什么不能正好铺满?
学生沉默。
师:我们接着他刚才的想法往下想。
生:正方形面积64平方厘米,64÷6=10……4,还多4平方厘米。
师:好的,还有别的想法吗?
学生沉默,教师引导。
师:我们一起来想想这6个长方形怎么铺,正好铺满边长6厘米的正方形
生:每排2个,摆3排。
生:6÷3=2个,6÷2=3个
生:12、18、24、36……
师:这些数有什么特点?
生:既是2的倍数,又是3的倍数。
师揭题。像6、12、18、24、36……既是2的倍数又是3的倍数,它们是2和3的公倍数。现在再来说说为什么能正好铺满边长6厘米的正方形而不能铺满边长8厘米的正方形。
生:6是2和3的公倍数,8是2的倍数但不是3的倍数。(师:所以……)8不是2和3的公倍数。
二.找公倍数的方法
师:找出6和9的公倍数有哪些?
学生独立思考如何找公倍数,学生交流。
生:6和9的公倍数有18、36、54、72……
师:你是怎么找的?
生:先找18,再十位上加2,个位上加2……
师:这方法是能找出公倍数来,可总觉得不太保险,会不会有遗漏,有没有其他方法了。
生:找出6和9的倍数,再从中找出一样的。
师生共同找,(略)
师:这方法是保险了,但有点烦,有简单点的方法了吗?
学生思考。
生:找9的倍数,再从中找出6的倍数,因为先找6的倍数的话,比如第一个是6,比9小,肯定不是9的倍数。
师:大家觉得这方法怎样。老师觉得至少有两个优点,第一,比刚才的方法简单了,而且不会遗漏。第二,大家想,在一定的范围里,9的倍数可定比6的倍数要…(少)这样,考虑的数也就……(少)
师生一起找,先找9的.倍数再找6的倍数。
生:还有方法,先找9的倍数,第一个是9,第二个是18,18是6和9的最小公倍数,那么以后的公倍数就只要依次加18.
师:刚才他提到的最小公倍数大家懂吗?
生:就是公倍数中最小的那个
师:哦。那我们来一起试试看。
三.教学韦恩图(略)
教后反思:
本课教学中,除了开始部分由于教学准备不足,学生思维有点跟不上外,在接下来的教学中,能有效的引导学生围绕着为什么能铺满,还能铺满边长几厘米的正方形,丰富学生对公倍数的感性认识,并在此基础上,抽象出公倍数的意义。能围绕着找公倍数的方法展开方法优劣的比较,让学生从中较为主动地自主学习有关公倍数的一系列知识点。本课上完后的体会是:一是教师的问题不宜过多,要有重点的设置几个即可,有益于学生在课堂学习总思维的连贯性和思考的深度。二是备课除了思路清晰外,一些细小的地方还应完善做得充分点。
五年级《公倍数和最小公倍数》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
最小公倍数第一课时教学反思篇四
核心提示:本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发...
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的`原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。
尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。
纵观这节课,学生学得还是比较轻松,掌握的较好。
最小公倍数第一课时教学反思篇五
一.公倍数的意义
学生思考后回答。
生:能铺满边长6厘米的正方形,因为边长6的正方形面积是36平方厘米,长方形面积是6平方厘米,36÷6=6个,用6个正好铺满。
师:那边长8厘米的正方形为什么不能正好铺满?
学生沉默。
师:我们接着他刚才的想法往下想。
生:正方形面积64平方厘米,64÷6=10……4,还多4平方厘米。
师:好的,还有别的想法吗?
学生沉默,教师引导。
师:我们一起来想想这6个长方形怎么铺,正好铺满边长6厘米的正方形
生:每排2个,摆3排。
生:6÷3=2个,6÷2=3个
生:12、18、24、36……
师:这些数有什么特点?
生:既是2的倍数,又是3的倍数。
师揭题。像6、12、18、24、36……既是2的倍数又是3的倍数,它们是2和3的公倍数。现在再来说说为什么能正好铺满边长6厘米的正方形而不能铺满边长8厘米的正方形。
生:6是2和3的公倍数,8是2的倍数但不是3的倍数。(师:所以……)8不是2和3的公倍数。
二.找公倍数的方法
师:找出6和9的公倍数有哪些?
学生独立思考如何找公倍数,学生交流。
生:6和9的公倍数有18、36、54、72……
师:你是怎么找的?
生:先找18,再十位上加2,个位上加2……
师:这方法是能找出公倍数来,可总觉得不太保险,会不会有遗漏,有没有其他方法了。
生:找出6和9的倍数,再从中找出一样的。
师生共同找,(略)
师:这方法是保险了,但有点烦,有简单点的方法了吗?
学生思考。
生:找9的倍数,再从中找出6的倍数,因为先找6的倍数的话,比如第一个是6,比9小,肯定不是9的倍数。
师:大家觉得这方法怎样。老师觉得至少有两个优点,第一,比刚才的方法简单了,而且不会遗漏。第二,大家想,在一定的范围里,9的倍数可定比6的倍数要…(少)这样,考虑的数也就……(少)
师生一起找,先找9的倍数再找6的倍数。
生:还有方法,先找9的倍数,第一个是9,第二个是18,18是6和9的最小公倍数,那么以后的公倍数就只要依次加18.
师:刚才他提到的最小公倍数大家懂吗?
生:就是公倍数中最小的那个
师:哦。那我们来一起试试看。
三.教学韦恩图(略)
本课教学中,除了开始部分由于教学准备不足,学生思维有点跟不上外,在接下来的教学中,能有效的引导学生围绕着为什么能铺满,还能铺满边长几厘米的正方形,丰富学生对公倍数的感性认识,并在此基础上,抽象出公倍数的意义。能围绕着找公倍数的方法展开方法优劣的比较,让学生从中较为主动地自主学习有关公倍数的一系列知识点。本课上完后的体会是:一是教师的问题不宜过多,要有重点的设置几个即可,有益于学生在课堂学习总思维的连贯性和思考的深度。二是备课除了思路清晰外,一些细小的地方还应完善做得充分点。