无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
四年级青岛版第一单元测试卷及答案篇一
【变量之间的关系】
一理论理解
1、若y随x的变化而变化,则x是自变量y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
九、估计(或者估算)对事物的估计(或者估算)有三种:
3.利用关系式:首先求出关系式,然后直接代入求值即可.
数学知识点初一
一元一次方程的应用
1.一元一次方程解应用题的类型
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
2.利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
(3)列:根据等量关系列出方程.
(4)解:解方程,求得未知数的值.
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
初一下册数学辅导复习资料
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与x轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于x轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段ab或线段ba,线段a。其中ab表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数。
四年级青岛版第一单元测试卷及答案篇二
1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数、0和负数之间的大小。
4.像-16、-500、-3/8、-0.4…这样的数叫做负数。
-3/8读作负八分之三。
16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。
+6.3读作正六点三。
0既不是正数,也不是负数。
6.如果表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
7.在数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。如:-8-6。
六年级毕业考试数学重难知识点:比和比例
比:
两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:
比的前项除以后项的商,叫做比值。
比的性质:
比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:
表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:
两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:
若a扩大或缩小几倍,b也扩大或缩小几倍(ab的商不变时),则a与b成正比。
反比例:
若a扩大或缩小几倍,b也缩小或扩大几倍(ab的积不变时),则a与b成反比。
比例尺:
图上距离与实际距离的比叫做比例尺。
按比例分配:
把几个数按一定比例分成几份,叫按比例分配。
小学六年级数学学习方法
学生需要在课堂上做好笔记,用来记录老师讲课重点、补充难题、听课心得等内容,方便日后复习与记忆。而小学数学笔记的记录,很多孩子无法准确掌握,需要下点工夫,找到适合自己的方法。
一、为什么要记笔记?
笔记可以方便日后有重点、不失真地复习。
奥数课堂通常包含大量的信息,涵盖定义、公式、解题技巧等各个方面。大多数同学难以一堂课完全掌握全部内容。尤其我们的课堂还经常包含一些经典的难题、补充题,单凭一次性的记忆无法提供充分的反刍的素材。
二、记笔记要避免的误区
然而,很多同学出于不自信或者对家长的敷衍,为了笔记而笔记——笔记完成就“大功告成”、束之高阁。殊不知:记在自己脑袋里面的知识才是自己的知识,有笔记而无复习正是做笔记的错误。
三、记笔记的形式
你们的笔记本内容多吗?平时书包装满的时候,你能够方便的找到笔记本吗?单独阅读笔记的时候,你觉得丰富吗?如果这三个问题你都回答“否”,那么请考虑一下将全部的笔记搬到讲义上去。
笔记一定要方便日后查阅。书写过程中,字迹不要求美观,但是至少直观。
关于某一题的延伸记录在题目旁边,关于一讲的梳理可以放到章节前,补充的题目可以放到章节后,个人心得可以放在页眉页脚。如果有补充随材还可以粘贴或者插入到讲义当中。
简而言之,笔记在形式上的要求就是:用最小的篇幅记录最多的内容,同时分出清晰地层次。
四、记笔记的基本方法
记入笔记的内容一定要经过筛选。每一名学生都有自己独特的笔记需求,相应的它也会有自己的筛选方法。抛开具体的科目、知识点,这里有一些参考标准。
1、内容本身不存在疑问。
我们经常发现部分同学在记录解题方法时抄写错误、或者照搬板书布局,最终他自己都无法清晰地读出正确的解题过程。这样的错误不仅会形成无用的笔记,还可能引导思维走入歧途。
2、重点记录自己不熟悉的内容。
为了照顾大多数、防止遗漏,老师在总结的时候通常会往多了讲,以至于同样的几何模型,五年级上学期提到一次、下学期再复习一次、到了六年级还会梳理两次。如果学生不加甄别、反复记录,费时费力不讨好,还容易滋生厌恶。——如果你实在很熟悉,留下一个记号。
3、珍惜自己的心得。
黑板上或讲义上的内容都是老师的知识,不论多么优秀的老师,他无法直接将自己的思路完整的拷贝进入学生的大脑。所以知识的传承需要学生的记录、复习、练习等等。而真正掌握知识点的最重要表现就是产生自己的认识与归纳。
四年级青岛版第一单元测试卷及答案篇三
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
四年级青岛版第一单元测试卷及答案篇四
亿以内的数的认识:
十万:10个一万;
一百万:10个十万;
一千万:10个一百万;
一亿:10个一千万;
2.数级
数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
3.数级分类
(1)四位分级法
即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。
这些级分别叫做个级,万级,亿级……
(2)三位分级法
即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位
数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。
5.数的产生
阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
四年级数学学习技巧
一、创设良好的开端,引发兴趣
良好的开端是成功的一半。教师首先要把微笑带进课堂,以教师良好的情趣去感染学生,促使学生形成一种良好的心理态势,为一节课的学习作好必要的心理铺垫。如果开场白讲的好,就能先生夺人,造成学生渴望追求新知的心理状态,激发起他们的学习兴趣,吸引其注意力,宛如平静的湖面上投石,激起一片思维涟漪,产生急欲一听的感染力,因此,导入新课要在“求奇、求趣、求妙、求新”上下功夫。
二、创设问题情境,实施启发式教学,激发学生的认知兴趣
新课程倡导启发式教学。启发式教学与传统的填鸭式教学相比具有极大的优越性。要想实施启发式教学,关键在于创设问题情景。创设问题情境是指具有一定难度,需要学生努力而又力所能及的学习情境。那么如何更好的创设问题情境呢?这就要求教师要认真钻研教材,深入挖掘知识的内在规律和新旧知识之间的相互联系,充分了解学生已有的认知结构,把数学特有的严谨、抽象、简洁、概括等属性,通过巧妙的形式引发学生的兴趣,诱发学生的积极思维活动,这样才能创设一个良好的问题情境。例如在教学《第几》一课时,我采用了讲故事方法创设问题情境。我先在黑板上画了美丽的森林,然后依次贴上了小白兔、小熊猫、狮子、松鼠、小马。变贴边讲故事:美丽的森林里新来了一群可爱的小动物。他们今天都搬到新家了。现在我们一起去看看他们都住在什么地方……这节课老师创设了一个生动而有趣的问题情境,我们一起编故事,一起讲故事,让学生犹如进入了一个美丽的大家园。通过更巧妙新颖的形式,引发学生的兴趣,诱发学生进一步的积极思维活动。
三、改变例题和练习的呈现方式,激发学生的学习兴趣
新教材已经为教师提供了丰富的教学资源,课本的数学内容的呈现方式也贴近儿童的生活实际,符合一年级学生的年龄特点。但这些毕竟是静止的东西,要引起学生的注意和兴趣还有很大的欠缺。低年级儿童往往对活动的事物更感兴趣,如能把这些静止的资源活动化,进一步增加它的趣味性,那一定会牢牢地抓住学生的双眼。如在教学《10的认识》一课时,我把0-9十个数字设计成拟人化的“数字小朋友”,让这十个“小朋友”一一在黑板上呈现。看到抽象的数字长上了手脚,成了会哭会笑的小精灵,学生的热情异常高涨。
四年级青岛版第一单元测试卷及答案篇五
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件a的概率我们记作p(a);对于随机事件a,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
6.列举法、树状图、列表
23.4概率计算举例
初二数学学习方法技巧
一该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。
因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。
物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。