无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
反比例函数教学设计篇一
1、能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2、在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
运用反比例函数解决实际问题
运用反比例函数解决实际问题
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中s一定,a和b之间的关系?你能举例吗?
例1、见课本73页
例2、见课本74页
(1)写出这个函数解析式
(2)当气球的体积为0.8m3时,气球的气压是多少千帕?
反比例函数教学设计篇二
教学目标:
使学生对反比例函数和反比例函数的图象意义加深理解。
教学重点:
反比例函数的应用
教学程序:
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v,i=60k
r()345678910
i(a)
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)
(1)分别写出这两个函数的表达式;
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
p145~1461、2、3、4、5
作业:p146习题5.41、2
文档为doc格式
反比例函数教学设计篇三
使学生对反比例函数和反比例函数的图象意义加深理解。
反比例函数的应用
1、实例1:
(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v,i=60k
r()345678910
i(a)
如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)
(1)分别写出这两个函数的表达式;
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
p145~1461、2、3、4、5
作业:p146习题5.41、2
反比例函数教学设计篇四
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
四、课堂引入
五、例习题分析
例1.见教材第57页
例2.见教材第58页
例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气体体积v(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
六、随堂练习
答案:=,当v=2时,=7.15
反比例函数教学设计篇五
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。