范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
找最大公因数教学设计及教学方法篇一
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
理解公因数和最大公因数的意义。
多媒体课件,方格纸(每人一张)。
(一)复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
(三)求两个数的最大公因数
1.明确方法,提出要求。
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
找最大公因数教学设计及教学方法篇二
最大公因数
教材第82、83页练习十五的第2一9题。
1.培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
2.培养学生抽象、概括的能力。
掌握找两个数最大公因数的方法。
投影。
1.完成教材第82页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的经验,并将这8组数分为三类。
2.完成教材第82页练习十五的第3一5题。
学生独立填在课本上,集体交流。
3.完成教材第83页练习十五的第6题。
学生独立填写,集体交流,体会两个数的最大公因数是1的几种情况。
4.完成教材第83页练习十五的第7一11题。
学生独立审题,理解题意,然后试着解答,集体交流。
5.指导学生阅读教材第83页的“你知道吗”。
请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?
通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。
找最大公因数教学设计及教学方法篇三
人教版小学数学五年级下册第60~62页
1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。
4、以去“游乐园”游玩为契机激发学生学习数学的兴趣。
理解公因数与最大公因数的定义;
探索寻找两个数的最大公因数的方法。
多媒体课件;小奖品;小组学案各一份;方格纸每组5张、彩笔;每个人制作学号卡佩戴好。
一、复习铺垫---抢夺气球
1、情境引入
(1)、出示“数学游乐园”
师:想去“数学游乐园”玩吗?(想)乐园里不仅有许多好玩的,表现好的还可以获得很多的奖励哦!
(2)、看现在乐园里正在举行“抢夺气球”的活动呢!谁想来抢呢?(回答课件中的问题,答对一个获得一个奖励)
3的因数有:6的因数有:
8的因数有:12的因数有:
二、讲解新授
你知道铺地砖的要求是什么吗?(交流“正方形地砖”“都是整块的”“边长还要是整分米数”什么是整分米数?)
2、合作探究
(1)阅读并讨论
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)
(2)合作与交流
a、交流边长是“4”为什么?
问:你们觉得行吗?
答:铺满
b、交流边长是“2”出示一个角
问:你觉得长边、短边可以分别铺几块呢?
答:铺满
c、交流边长是“1”铺一个角
问:你觉得长边、短边可以分别铺几块?
答:铺满
认识公因数和最大公因数
(1)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
(2)抽象公因数概念
(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)
同意吗?
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、1612的因数有:1、2、3、4、6、12
你发现什么?
我发现1、2、4既是12的因数又是16的因数。
能不能简单的说说,它们是12和6的什么数吗?
1、2、4是12和16公有的因数,1、2、4是12和16的公因数
板书“公因数”
说能说一说什么是公因数
几个数共有的因数,就是这几个数的公因数
那16和12的公因数有:1、2、4
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
现在中间的表示什么呢?应该填?
那这圈里的(指左边、右边)填?表示?
(4)认识最大公因数
边长最大是几分米?你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)
实际上这4就是16和12的最大公因数,板书“最大公因数”
16和12的最大公因数是4
2、合作交流、探索方法
怎样求18和27的最大公因数。(看哪组的方法多)
小组谈论,实践交流。交流反馈、小结方法。
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
3、找一找,填一填
8的因数:16的因数:
8和16的公因数:8和16的最大公因数:
想一想:8和16之间有什么关系?与它们的最大公因数有什么关系?
小结:如果较大数是较小数的倍数,那么较小数就是它们的最大公因数。
找一找,填一填
5的因数:7的因数:
想一想:5和7的公因数有哪些?
小结:像这样的两个数:公因数只有1的两个数,叫做互质数。
互为质数的两个数的最大公因数是1.
三、巩固练习
1、游戏:看谁站的对。
座位号是12的因数而不是18的因数的同学站左边、是18的因数而不是12的因数的站右边、是12和18公因数的站中间。
四、全课总结:学生畅谈本节课的收获。
找最大公因数教学设计及教学方法篇四
1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
自主学习、合作探究
(约5分钟)
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
(约5分钟)
1、几个数( )叫做这几个数的公因数,其中最大的一个叫做( )
2.16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。
3.a=225,b=235,那么a和b的最大公因数是( )。
4、用短除法求出99和36的最大公因数。
(约13分钟)
小组合作学习教材第62页例3。
1、学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是 厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3、总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
(约8分钟)
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
1、达标练习
2、全课总结
这节课你都学到了什么知识?有什么收获?
3、作业布置
练习十五5,6题。
板书设计:
最大公因数(2)
铺砖问题:求公因数
找最大公因数教学设计及教学方法篇五
1、探索找两个数的公因数的方法,会用列举法和短除法找出两个数的公因数和最大公因数。
2、经历找两个数的〔〕公因数的过程,理解公因数和最大公因数的意义。
理解两个数的公因数,最大公因数及互质数的数学意义能够用列举法或短除法正确地找出两个数的公因数和最大公因数。
小组合作探究练习法
小黑板出示复习题
一、温故而知新
1、温故——例1填一填、想一想。(让学生独立填写再反馈)
12的因数:1、2、3、4、6、12。
30的因数:1、2、3、5、6、10、15、30
2、引导学生思考:发现了什么?
让学生说出自己的感知,把话题集中到两个数的相同因数——公有因数方面,并指导学生用课本中的集合图揭示12和30各自的全部因数。
重点思考:两个集合圈相交的部分应该填哪些因数?
组织学生展开讨论交流反馈,同时引出本节课的课题前言:两个数的公因数
二、新知探究
1、两个数的公因数和最大公因数
(1)讨论反馈自己的发现
(2)公因数和最大公因数的概念。
2、怎样找两个数的最大公因数
(1)由学生根据前面的探究过程,很自然地提出列举法
(2)介绍短除法求最大公因数的方法
板书介绍,并试求12和30的最大公因数
学生试一试求下列各组的最大公因数
16和246和127和9
独立完成后指名板演,再进行集体讲评
议一议:用短除法求最大公因数要注意些什么?
让学生在思考后明确:必须除到两商除了1再没有别的公因数为止
思考:还发现了什么?
引导学生关注6和12、7和9这两组数,分析最后的结果为什么是6和1?
3、介绍互质数
(1)互质数的意义
(2)对互质数的探讨
分析:2和34和158和912和61和184和25
在学生议后,得出公因数只有1的两个数有哪些。
并得出结论:可以是不同的质数(2和3)一个数是质数一个是合数(4和15)两个都是合数(8和9)1和非零自然数(1和18)
三、练习深化
求下列各组数中的最大公因数。
24和307和918和631和338和57
可以让学生独立思才,哪几组数可以直接得出?
四、全课总结
1、理解两个数的公因数,最大公因数及互质数的意义能够用列举法或短除法正确找到两个数的公因数和最大公因数。
2、正确判断两个数的互质关系。
五、布置作业