作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
九年级上数学教案带教后反思篇一
1.检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2.揭示课题:有趣的平衡(板书)
九年级上数学教案带教后反思篇二
1.掌握分式、有理式的概念。
2.掌握分式是否有意义、分式的值是否等于零的识别方法。
教学重点
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学难点:
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学时间:一课时。
教学用具:投影仪等。
教学过程:
九年级上数学教案带教后反思篇三
一、基本情况:
本学期是初中学习的关键时期本学期我担任初三年级(29、30)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的`高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
二、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
九年级上数学教案带教后反思篇四
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
九年级上数学教案带教后反思篇五
?义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
九年级上数学教案带教后反思篇六
1、理解用配方法解一元二次方程的基本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点
重点:会用配方法解一元二次方程.
难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程
(一)复习引入
1、用配方法解方程x2+x-1=0,学生练习后再完成课本p.13的“做一做”.
2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?
(二)创设情境
怎样解这类方程:2x2-4x-6=0
(三)探究新知
让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。
(四)讲解例题
1、展示课本p.14例8,按课本方式讲解。
2、引导学生完成课本p.14例9的填空。
3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
(五)应用新知
课本p.15,练习。
(六)课堂小结
1、用配方法解一元二次方程的基本步骤是什么?
2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解
一元二次方程的算法。
(七)思考与拓展
不解方程,只通过配方判定下列方程解的
情况。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分别配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。
点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。
九年级上数学教案带教后反思篇七
?折扣》教学设计
?教学内容分析】:本课选自我校生活数学校本教材"折扣"其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。
?学情分析】:a类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格,100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。
b类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。
?教学目标】:
知识与能力:a组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。
b组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。
过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。
情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。
?教学重点】:计算折扣后的物品价格。
?教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。
?重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。
?教学准备】:课件
?教学过程】:
一、复习导入
3折=0.35折=0.58折=0.86折=0.6
2.5折=0.253.8折=0.387.2折=0.72
ab组学生进行折扣与小数的转换。
二、折扣的计算
1、计算折扣
棉鞋原价:650元,现4折出售,需要多少元钱?
1折扣换算为小数:4折=0.4
2列算式:650_0.4=260(元)
2、练一练:
?百科全书》原价150元,现7折出售,需要多少元钱?
老师引导学生做练习。
预设生成:学生列算式时,容易直接列成150_7=1050(元)
解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。
3、巩固练习:
登山鞋原价480元,现7.5折出售,需要多少元?
三:折扣的比较
课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。
羽绒服原价500元
商场一:商场二:商场三:
8折7折9折
请学生说出列式并快速计算得数。
商场一:500_0.8=400(元)
商场二:500_0.7=350(元)
商场三:500_0.9=450(元)
比较得出最便宜的商场,商场二。
1.折扣是整数的比较:
商场二打7折是最便宜的,哪个商场是最贵的呢?
商场三
那么商场三是打几折呢?
9折
比较一下折扣和最后的价格,你会发现什么呢?
结论:相同价格的物品,折扣数越小,价格越低,越便宜。
总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)
预设生成:
a组:不能发现折扣与最终价格之间的关系。
b组:计算后,学生比较不出谁更便宜。
解决措施:
a组:进一步进行提示,把问题提的更具体。
b组:教师帮助学生将数字放在一起进行比较。
2.折扣是小数的比较:
出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。
书包原价100元
商场一:商场二:
8折8.8折
学生回答(a组的学生会很快理解并正确比较,b组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)
验证:
商场一:100_0.8=80(元)
商场二:100_0.88=88(元)
比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请a组学生进行总结)
预设生成:
a组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。
b组:不理解规律的内容。
解决措施:
a组:老师指出黑板上总结出的规律对学生进行提示。
b组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。
3.课堂练习:
(1)不用计算,说出每组商品中,谁的价格更便宜。
课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。
2保温杯原价120元,大润发6折,沃尔玛6.6折。
3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。
(2)游戏:模拟商店
?设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】
四、拓展延伸
出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。
五、课堂小结:
这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。
板书设计:
一、折扣的计算
二、折扣的比较
4折=0.4500_0.8=400(元)
650_0.4=260(元)500_0.7=350(元)
500_0.9=4500(元)
相同价格的物品,折扣数小的,价格就低。
家庭指引:
a组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。
b组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。