教学安排是指教师在一段时间内对整体教学任务的分配和安排。二年级教案范文:《理解简单的逻辑关系》
青岛版六年级数学教案及教学反思篇一
1、让学生在商品打折销售的情境中理解“折扣”的意义。
2.学生在掌握求一个数的百分之几是多少这种问题的基础上自主解决问题,培养学生解决实际问题的能力。
3.养成独立思考、认真审题的学习习惯。
理解“折扣”的意义;并能进行相关的计算。
在理解“折扣”意义的基础上灵活进行与商品售价相关的计算
活动一、创设情景理解“折扣”的意义
2、引导学生理解打折的含义。
商店降价出售商品叫做折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十。
(1)四折是十分之( ),改写成百分数是( ).
(2)六折是十分之( ),改写成百分数是( ).
(3)七五折是十分之( ),改写成百分数是( ).
活动二、自主探索解决问题的方法
80元105元35元六五折七折八八折现价现价现价
1、宣布活动要求,学生小组活动。(选择一件你喜欢的商品,根据折扣,请你算一算应付多少钱?比原价便宜了多少钱?并在小组内交流你的解题思路)
2、让学生小组活动。
3、学生汇报
活动三、购物长见识:
180×85%=153(元)
(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
160×(1-90%)=160×10% =16(元)
甲超市:每瓶12元,买四瓶送一瓶乙超市:每瓶12元,八五折
活动五:拓展加深一件玩具八五折销售,小明花了四十元钱,请你帮他求一下原价是多少?
活动六:课堂总结学生谈谈学习本课有什么新的收获。
活动七、广告策划,我能行!天气渐冷,买羽绒服越来越多.为进行促销,某商店老板准备将原价400元一件的羽绒服以300元的价格出售.请你综合折扣知识,为该店老板设计一个简单的广告.课外小知识:农业收成,经常用“成数”来表示.例如,报纸上报导“去年我县油菜籽比前年增产二成”
“一成”是十分之一,改写成百分数就是10%。“二成”是十分之二,改写成百分数是()?“三成五”是十分之三点五,改写成百分数就是35%。
现在“成数”已经广泛应用于表达各行各业的发展变化情况。如:今年我国进口车总数增加三成;北京出游人数比去年增加五成;调整饮食可减少三成癌症发生。
作业布置
青岛版六年级数学教案及教学反思篇二
第1课时 分数乘法的意义(1)
【教学内容】教材第2页例1。
【教学目标】
知识与技能:在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感、态度与价值观:引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
【重点难点】
重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。
难点:总结分数乘整数的计算法则。
【导学过程】
【情景导入】
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
3.比较分析
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?预设:生1:按照加法计算=(个)。生2:(个)。师:比较一这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
青岛版六年级数学教案及教学反思篇三
1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。
3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:
理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。
教学流程:
一、知识扩充
(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)
师:(出示一组信息) 12月,中国银行给工业发放贷款18 636亿元,给商业发放贷款8 563亿元,给建筑业发放贷款2 099亿元,给农业发放贷款5 711亿元。
(让生思考,从信息中想到了什么?)
设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境
师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?
生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?
(生走入老师创设的情境,感受存款的乐趣。)
(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)
设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。
三、合作学习
师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
(生找出本金、存款种类后,再谈一谈自己有什么新发现。)
出示表格
(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息 = 本金 × 时间 × 利率。)
生: 1000 × 3.6% ×5 = 180 元。
师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到。(出示利息清单。)
利息清单
生总结:税后利息 = 本金 × 利率 × 时间 ×(1-20%)。
设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。
四、深化练习
1.奉献。
2.理财。
3.帮助。
4.介绍小知识。(教育储蓄)
设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。
效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。
六年级数学4
掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。
教学难点:
能根据实际情况,判断各部分量之间应该按怎样的比例来分配。
教学重点:
掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用
教学目标:
2、培养学生应用所学数学知识解决实际问题的能力;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学策略:
引导学生将比转化成分数、份数,指导学生试算
教学准备:
学生课前作调查;
教学过程:
一、导入
1、看题目:“比的应用”,你想知道什么?
2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的`知识。下面,请汇报一下你调查到的信息。
二、新课
1、配置奶茶
星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。
师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。
(1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?
(2)小明想要配制220毫升的奶茶,
(a)先要解决什么问题?(奶和茶各取多少毫升?)
(b)请你先独立计算一下,奶和茶各取多少毫升?
(4)评价
(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?
(b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)
2、计算电费
(1) 刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”
(a) 你觉得小明家应付多少元电费?你是怎么想的?
(b) 你为什么不同意他的想法?(不公平)
三、课堂小结
今天这堂课我们学习了“按比例分配”,你有什么收获?
青岛版六年级数学教案及教学反思篇四
(一)比例的意义和基本性质
1.比例的意义。
教学比例的意义。教材提供了含有国旗的四个情境图,由每面国旗长与宽的比值是相等的,引出比例意义的教学。
2.比例的基本性质。
先介绍组成比例的各部分的名称:项、内项、外项;分别计算比例中两个内项之积与两个外项之积,发现两个乘积的关系;再把比例改写为分数形式,把等号两边的分子与分母交叉相乘,发现积的关系。在此基础上,总结出比例的基本性质。
3.解比例。
教材首先介绍什么叫解比例,解比例的依据是什么。
教学解比例,让学生体会解比例在生活中的应用。
解用分数形式表示的比例。教材只根据比例的基本性质把比例转化为方程,解方程则由学生自己完成。
(二)正比例和反比例的意义
教学正比例的意义。通过水的体积和高度的比值一定,引出正比例的意义,说明体积和高度成正比例关系,体积和高度叫做成正比例的量。接着把正比例的关系进一步抽象概括成(一定)。
教学正比例图像。教材直接呈现例1中体积与高度的正比例关系图像,再让学生体会正比例图像的特点和作用。
教学反比例的意义。编排思路与例1类似。
(三)比例的应用
1.比例尺。
教材通过主题图教学比例尺的认识。首先给出比例尺的概念,再结合两幅地图介绍数值比例尺和线段比例尺。然后,教材通过一张机器零件放大的图纸,让学生认识把实际距离放大的比例尺如何表示。
把线段比例尺改写成数值比例尺。
根据比例尺和图上距离,应用方程求实际距离。
综合运用比例尺的有关知识解决实际问题。要求学生根据学校操场的实际长度,画出操场平面图。
2.图形的放大与缩小。
教材呈现了照像、用放大镜看书、投影仪放大图表、人和影子等情境,使学生初步认识生活中的放大与缩小现象。
教学图形放大与缩小的特点。
3.用比例解决问题。
教学应用正比例的意义解决问题。
用反比例的意义解决问题。编排思路与例5相似。
1.体现比例在生产和生活中的广泛应用。
首先知识由实际问题引入,例如由大小不同的国旗引入比例的意义,从“世界公园”的埃菲尔铁塔模型引入解比例,从生活中的放大、缩小现象引入图形的放大和缩小。
其次练习中安排了较多的根据比例意义解比例的实际问题。
第三安排了“比例的应用”一节内容,其中既有正、反比例的实际问题,还有比例尺和图形的`放大与缩小。通过这些内容的学习,使学生体会比例在生产生活中的应用,提高学生应用所学知识解决实际问题的能力。
2.渗透函数思想。
函数是数学的重要概念之一。在小学,主要是通过一些知识的学习,渗透函数思想。本单元中正比例和反比例的意义是渗透函数思想的重要内容。因为成正比例和反比例的量实际上反映的是两个变量之间的依存关系。教材通过实例,用列表的形式,体会变量之间的关系,并用、的式子表示两个变量之间的关系。在认识正比例关系时,教材通过图像表示两个变量的关系,加深学生对正比例关系的认识。
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
重点:理解比例的意义和基本性质。会用比例知识解答比较容易的应用题
1.重视基本概念的教学。
比例、正比例、反比例是本单元学习的几个基本概念,十分重要。学习比例的相关知识以及比例的应用都有赖于对这些概念的理解和掌握。如解答含正反比例关系的实际问题,首先要对两个量成何比例做出判断,然后依据正比例或反比例数量关系的特点解答教学中要通过观察、比较、判断、归纳等方法帮助学生建立明晰的概念,把握概念的内涵。同时通过应用,不断加深对这些概念的理解和掌握。
2.提高学生综合运用知识的能力。
本单元的知识综合性比较强。所以学习中既要注意新旧知识的联系,又要注意发展学生综合运用知识的能力。教材的编写也注意体现知识的综合应用,例如比例尺的一些练习,不仅限于计算图上距离和实际距离,而且涉及到测量、图形、方向与位置的知识以及根据实际设计比例尺。
比例(11课时)
青岛版六年级数学教案及教学反思篇五
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
理解百分率的含义,掌握求百分率的方法。
探究百分率的含义。
ppt课件
一、复习导入(8分)
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)
8、尝试解答修改后的问题。
10、举一些生活中的`百分率,明确目标,进入新课:
(1)知道达标率、发芽率、合格率等百分率的含义。
(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调
4、解决问题要注意:看清求什么率?找出对应的量。
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固
1、说说下面百分率各表示什么意思。(1颗星)
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。()
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。()
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。
3、解决问题(3颗星)
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(3)要求,以2人小组互查,每人练习一道题,口头列式。
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
青岛版六年级数学教案及教学反思篇六
化简比。(教材第50~51页例1)
1、能运用比的基本性质化简比。
2、理解求比值和化简比的区别。
3、理解知识间的内在联系,渗透类比思想。
重点:掌握化简比的方法。
难点:理解化简比与求比值的区别。
一、复习引入
1、把下面的分数化为最简分数。(课件出示题目)
4/86/3012/1814/56
点名学生回答,并说一说什么是最简分数。
2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)
3、师:比的基本性质是什么?
4、引出新课。
师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的'整数比。这就是这节课我们要一起学习的内容。
二、学习新课
1、认识最简单的整数比。
师:谁知道什么样的比可以称作最简单的整数比?
引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。
教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1.
指名学生举出几个最简单的整数比。
青岛版六年级数学教案及教学反思篇七
已学了比、求比值、化简比按比例分配等知识。
1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。
练习
习题
教师活动
学生活动
一、复习概念
什么叫做比?
怎样求比值与化简比?
求比值与化简比有什么联系与区别?
二、独立练习
第1题练习后说一说自己的方法。
第2题巩固化简比的方法。
第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。
第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。
三、你知道吗?
学生自学,然后教师介绍黄金分割。
口答并结合练习加以说明
列表分析
教学反思
还可以。
青岛版六年级数学教案及教学反思篇八
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
负数的意义和数轴的意义及画法。
负数的初步认识(1)(教材第2页例1)。
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
体会负数的重要性。
多媒体课件。
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的`初步认识(1)
教学教材第2页例1。
(1)教师板书关键数据:0℃。
数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
通过这节课的学习,你有什么收获?
完成练习册中本课时的练习。
青岛版六年级数学教案及教学反思篇九
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
一、揭示课题
1、口算(指名口算课本第64页第11题)
2、引入新课
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数
1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?
当a能被b整除,也就是b整除a时,还可以怎样说?板书:
约数
倍数
2、做“练一练”第1题
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习
(1)从小到大写出9的五个倍数
复习约数倍数相关知识(略)
(2)写出18的所有约数
三、复习质数合数
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1
质数
合数
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)
4、做“练一练”第3题
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)
2、“练一练”第4题
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习
能被2、5、3整除各有什么特征
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)
2、“练一练”第5题
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数
奇数
想一想,自然数可以分为哪几类?
六、课堂小结
根据板书内容,说说相互之间有什么联系。
七、课堂练习
1、练习十一和12题
2、课堂作业
八、课外作业:练习十一第18题。
教科书第61——62页,练习十七第1——4题
本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。
这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关。
正确理解比的意义。
1、通过实物及学过的关系式等概括出比的意义,用讲授法讲解说明两个数的.比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。
2、举例说明比值的求法,以以及比和除法的联系。
;常分米,款分米的红旗一面,投影仪一、复习引入。
1、出示红旗。
讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?
引导学生回答:
要表示红旗的长和宽的关系,可以求长是宽的几倍,或者宽是长的几分之几。
板书;3÷2=3/2……长是宽地3/2。
2÷3=2/3……宽是长到2/3。
二、探究新知。
1、导入新课。
板书:比
2、教学比难道意义。
1、)红旗长和宽的关系,也可以这样说:
长和宽的比是2比3,
宽和长的比是2比3。
2、)出示投影片:
“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”
求汽车路程和时间的比是:100比2。
3、)学生讨论比的意义。
4、)教师小结:两个数相除又叫做两个数的比。
3、教学比的读写法,各部分的名称及求比值的方法。
1、)比的写法:3比2记作3:2。
2比3记作2:3。
100比2记作100:2。
2、)比的读法。
3、)比的各部分的名称:
3:2=3÷2=3/2
||||
前项比号后项比值
4、)比值;
比的前项除以后项所得的商,叫做比值。
说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。
比的后项不能0。
4、做教科书第62页上半部分的“做一做”的题目。
5、教学比与除法、分数的关系。
6、做教科书第61页下半部分的“做一做”的题目。
三、巩固练习:
1、做练习十七的第1题。
2、做练习十七的第2、3题。
四、课堂小结:
同学们,这节课我们学到了什么知识?如何求比值?