教案是教师进行教学活动前的一种准备工作,有助于教学的顺利进行。在编写教案时,教师们需要参考借鉴一些优秀的范文,以下是小编为大家整理的三年级教案范文,供大家参考学习。
因数和倍数的教案设计篇一
1、精简概念,减轻学生记忆负担。
三方面的调整:
a。不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
b。不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
c。公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2、注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
因数和倍数的教案设计篇二
苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。
1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。
2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。
3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。
认识因数和倍数。
求一个数的因数、倍数的方法。
小黑板、准备12个同样大的正方形学具。
一、操作引入,认识意义
1.操作交流。
引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。
交流:你有哪些拼法?请你说一说,并交流你表示的算式。
结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。
2.认识意义。
(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的'倍数吗?同桌互相说说看。
(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是o的自然数。
因数和倍数的教案设计篇三
知识与技能、过程与方法:
从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
1、因数与倍数意义以及它们的相互依存关系。
2、寻找一个数的因数或倍数的方法。
教学准备:课件
教学流程:
流程1:导入新课
流程2:认识倍数和因数
流程3:探索求一个数的因数的方法
流程4:完成“试一试”,总结一个数因数的特点
流程5:探索求一个数的倍数的方法
流程6:完成“试一试”,总结一个数倍数的特点
流程7:完成智慧乐园
流程8:完成质疑乐园
流程9:数学游戏
流程11:课堂小结
流程10:组织学生退场
第一段:导入新课
流程1:导入新课
师:课前我们先来做个脑筋急转弯,看看谁最聪明?
(学生发表自己的看法)
今天,我们就把这三个人请到我教室里来好吗?(课件出示图片)你能不能以大李为中心,来介绍一下小老和老李。(学生说一说)
师:我们能不能单独地来说,大李是爸爸?(不能)为什么?
引出相互依存(板书)
第二段:认识倍数和因数
流程2:认识倍数和因数
(一)学习因数和倍数的概念
1、用课前准备的12张同样大的正方形纸片拼成一个长方形。前后四人一组
要求:
(1)、看一共能摆出几种完全不同的长方形。
(2)、想一想怎样用乘法算式表示你的摆法。
(3)、为了便于展示,请在你的课本反面来摆。
(学生动手操作、汇报)
师:请你用乘法算式表示你的摆法?
生:1×12=12 2×6=12 3×4=12
师:为了避免重复,我们可经只选择其中一个算式。我们以前学过,在乘法算式里,乘号前面和后面的数都叫什么?(因数)等号后面的数叫什么?(积)这里的因数和积是乘法算式各部分的名称。其实,因数和积之间就存在我们课前提到的相互依存关系。以3×4=12为例,数学上说12是4的倍数,12也是3的倍数,4和3都是12的因数。这里因数和倍数就具有相互依存的关系。不能孤立地说3是因数,也不能孤立地说12的倍数,这就是今天这节课我们研究:倍数和因数。
师:那根据另外两个乘法算式,同学们会说哪个数是哪个数的倍数,哪个数是哪个数的因数吗?请同桌相互说一说(学生活动)。
老师这是里有两道算式,你会说吗?
8×9=72 18÷3=6
(请学生来说一说)
师:同学们,倍数、因数指的是两个自然数之间的一种关系,所以我们一定要说清楚谁是谁的倍数,谁是谁的因数,老师还要补充说一点,为了方便,我们在研究时,所说的数一般指不是0的自然数。
第三段:探索求倍数和因数的方法
流程3:探索求一个数的因数的方法
师:同学们怎样找一个数的因数呢?同学们愿意独立思考,尝试解决吗?面对新问题,看看谁能挑战成功。
师:你能找出36所有的因数吗?请同学们试着在练习本上写一写。
(学生活动)学生汇报
师:从1开始,想哪两个数相乘得36,我们就可以成对地写出36的因数,一直找到两个乘数最接近为止。解决这个问题首先要考虑什么样的数是36的因数。如果有两个数相乘的积是36,那么这两个数都是36的因数。例如,1×36=36,那么1和36都是36的因数。
师:看看老师的填法和你一样吗?
师:求一个数的因数,可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重复、不遗漏。
流程4:完成“试一试”,总结一个数的因数的特点
师:下面请同学们用你喜欢或熟悉的方法写出你自己所喜欢的数字的因数。(学生活动)相机寻找学生板书。
师:通过观察上面同学所写的数的因数,你发现了什么?学生说一说(完成表格)
师小结:一个数最小的因数是1,最大的因数是它本身;一个数因数的个数是有限的。
写出你的学号的所有因数。
流程5:探索求一个数的倍数的方法
师:同学们先想一想,什么样的数是3的倍数?怎样才能准确地写出3的倍数?把你的想法和小组里的同学交流一下。(学生活动)
师:同学们一定能想到,3的倍数就是3和除0以外的一个自然数相乘的积。例如3×1=(3),3×2=(6),3×3=(9),括号里的数都是3的倍数。这样我们按从小到大的顺序,用乘法就可以有条理地说出3的倍数了,它们是:3、6、9、12、15、18。能把3的倍数全部说完吗? 说不完,那应该怎样表示问题的答案呢? 因为3 的倍数的个数是无限的,所以写的时候要借助省略号来完整地表示出结果。
流程6:完成“试一试”,总结一个数的倍数的特点
师:下面就请同学们用这种方法分别写出2的倍数和5的倍数。注意要有顺序地思考,并且规范地表示出结果。(学生活动)
师:老师和同学们核对一下答案,如果出错了,一定要分析原因,再订正。(核对答案)
师:现在我们已经找到了求一个数的倍数的方法,并用这样的方法分别求出3、2、5的倍数,请同学们观察上面的例子,你们能发现一个数的倍数有什么特点吗?大胆地说出你们的想法。(学生活动)
师小结:仔细观察,同学们会发现:一个数最小的.倍数是它本身,没有最大的倍数;一个数倍数的个数是无限的。
第四段:深化认识,巩固方法
流程7:完成智慧乐园
师:请看想想做做第3题。先填表,再讨论回答下面的问题: 表中每栏的“每排人数”各是怎样算出来的?“排数”和“每排人数”都是24的什么数?在填表的过程中你还受到了什么启发?(学生活动)
师: 24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中“排数”和“每排人数”都是24的因数。在填表的过程中我们会发现一对一对地找一个数的因数比较方便。
流程8:完成质疑乐园
先判断对错,再说一说自己的判断理由。
第五段:数学游戏
流程9:数学游戏
师:请同学们拿出写有自己学号的卡片,我们一起来做个游戏。看一看,想一想,你卡片上的数是否符合下面的条件,符合的请举起卡片,挥一挥。(课件出示)我是5,我找我的倍数;(学生活动)我是24,我找我的因数;(学生活动)我是1,我找我的倍数;(学生活动)我是30,我找我的因数。(学生活动)
第六段:全课总结
流程 10:课堂总结
师:同学们,这节课我们认识了倍数和因数,探索了找一个数的倍数和因数的方法,根据乘法算式,用这一个数分别乘1、乘2、乘3……可以有顺序地找到它的倍数。一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。找一个数的因数可以想乘法算式,把一个数写成两个数相乘的积,乘数就是这个数的因数;也可以想除法算式,用一个数依次去除以1、2、3……能得到整数商的,除数和商就是它的因数。写因数时根据算式有顺序的一对一对地写比较方便,不容易遗漏或重复。一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
流程11:组织下课
组织学生分批退场。
(1)请学号数不少于三个因数的同学先退场;
(2)请学号数只有两个因数的同学退场;
(3)请学号数只有一个因数的同学跟我一起离场。
因数和倍数的教案设计篇四
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的.方法,提高推理能力。
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
[板书设计]
数的奇偶性
12+34=48偶数+偶数=偶数
11+37=48奇数+奇数=偶数
12+11=23奇数+偶数=奇数
因数和倍数的教案设计篇五
知识与技能、过程与方法:
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
1、因数与倍数意义以及它们的相互依存关系。
2、寻找一个数的因数或倍数的方法。
教学准备:课件
教学流程:
流程1:导入新课
流程2:认识倍数和因数
流程3:探索求一个数的因数的方法
流程4:完成试一试,总结一个数因数的特点
流程5:探索求一个数的倍数的方法
流程6:完成试一试,总结一个数倍数的特点
流程7:完成智慧乐园
流程8:完成质疑乐园
流程9:数学游戏
流程11:课堂小结
流程10:组织学生退场
第一段:导入新课
流程1:导入新课
师:课前我们先来做个脑筋急转弯,看看谁最聪明?
(学生发表自己的看法)
今天,我们就把这三个人请到我教室里来好吗?(课件出示图片)你能不能以大李为中心,来介绍一下小老和老李。(学生说一说)
师:我们能不能单独地来说,大李是爸爸?(不能)为什么?
引出相互依存(板书)
第二段:认识倍数和因数
流程2:认识倍数和因数
(一)学习因数和倍数的概念
1、用课前准备的12张同样大的正方形纸片拼成一个长方形。前后四人一组
要求:
(1)、看一共能摆出几种完全不同的长方形。
(2)、想一想怎样用乘法算式表示你的摆法。
(3)、为了便于展示,请在你的课本反面来摆。
(学生动手操作、汇报)
师:请你用乘法算式表示你的摆法?
生:1×12=122×6=123×4=12
师:为了避免重复,我们可经只选择其中一个算式。我们以前学过,在乘法算式里,乘号前面和后面的数都叫什么?(因数)等号后面的数叫什么?(积)这里的因数和积是乘法算式各部分的名称。其实,因数和积之间就存在我们课前提到的相互依存关系。以3×4=12为例,数学上说12是4的倍数,12也是3的倍数,4和3都是12的因数。这里因数和倍数就具有相互依存的关系。不能孤立地说3是因数,也不能孤立地说12的倍数,这就是今天这节课我们研究:倍数和因数。
师:那根据另外两个乘法算式,同学们会说哪个数是哪个数的倍数,哪个数是哪个数的因数吗?请同桌相互说一说(学生活动)。
老师这是里有两道算式,你会说吗?
8×9=7218÷3=6
(请学生来说一说)
师:同学们,倍数、因数指的是两个自然数之间的一种关系,所以我们一定要说清楚谁是谁的倍数,谁是谁的因数,,老师还要补充说一点,为了方便,我们在研究时,所说的数一般指不是0的自然数。
第三段:探索求倍数和因数的方法
流程3:探索求一个数的因数的方法
师:同学们怎样找一个数的因数呢?同学们愿意独立思考,尝试解决吗?面对新问题,看看谁能挑战成功。
师:你能找出36所有的因数吗?请同学们试着在练习本上写一写。
(学生活动)学生汇报
师:从1开始,想哪两个数相乘得36,我们就可以成对地写出36的因数,一直找到两个乘数最接近为止。解决这个问题首先要考虑什么样的数是36的.因数。如果有两个数相乘的积是36,那么这两个数都是36的因数。例如,1×36=36,那么1和36都是36的因数。
师:看看老师的填法和你一样吗?
师:求一个数的因数,可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重复、不遗漏。
流程4:完成试一试,总结一个数的因数的特点
师:下面请同学们用你喜欢或熟悉的方法写出你自己所喜欢的数字的因数。(学生活动)相机寻找学生板书。
师:通过观察上面同学所写的数的因数,你发现了什么?学生说一说(完成表格)
师小结:一个数最小的因数是1,最大的因数是它本身;一个数因数的个数是有限的。
写出你的学号的所有因数。
流程5:探索求一个数的倍数的方法
师:同学们先想一想,什么样的数是3的倍数?怎样才能准确地写出3的倍数?把你的想法和小组里的同学交流一下。(学生活动)
师:同学们一定能想到,3的倍数就是3和除0以外的一个自然数相乘的积。例如3×1=(3),3×2=(6),3×3=(9),括号里的数都是3的倍数。这样我们按从小到大的顺序,用乘法就可以有条理地说出3的倍数了,它们是:3、6、9、12、15、18。能把3的倍数全部说完吗?说不完,那应该怎样表示问题的答案呢?因为3的倍数的个数是无限的,所以写的时候要借助省略号来完整地表示出结果。
流程6:完成试一试,总结一个数的倍数的特点
师:下面就请同学们用这种方法分别写出2的倍数和5的倍数。注意要有顺序地思考,并且规范地表示出结果。(学生活动)
师:老师和同学们核对一下答案,如果出错了,一定要分析原因,再订正。(核对答案)
师:现在我们已经找到了求一个数的倍数的方法,并用这样的方法分别求出3、2、5的倍数,请同学们观察上面的例子,你们能发现一个数的倍数有什么特点吗?大胆地说出你们的想法。(学生活动)
师小结:仔细观察,同学们会发现:一个数最小的倍数是它本身,没有最大的倍数;一个数倍数的个数是无限的。
第四段:深化认识,巩固方法
流程7:完成智慧乐园
师:请看想想做做第3题。先填表,再讨论回答下面的问题:表中每栏的每排人数各是怎样算出来的?排数和每排人数都是24的什么数?在填表的过程中你还受到了什么启发?(学生活动)
师:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排数和每排人数都是24的因数。在填表的过程中我们会发现一对一对地找一个数的因数比较方便。
流程8:完成质疑乐园
先判断对错,再说一说自己的判断理由。
第五段:数学游戏
流程9:数学游戏
师:请同学们拿出写有自己学号的卡片,我们一起来做个游戏。看一看,想一想,你卡片上的数是否符合下面的条件,符合的请举起卡片,挥一挥。(课件出示)我是5,我找我的倍数;(学生活动)我是24,我找我的因数;(学生活动)我是1,我找我的倍数;(学生活动)我是30,我找我的因数。(学生活动)
第六段:全课总结
流程10:课堂总结
师:同学们,这节课我们认识了倍数和因数,探索了找一个数的倍数和因数的方法,根据乘法算式,用这一个数分别乘1、乘2、乘3……可以有顺序地找到它的倍数。一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。找一个数的因数可以想乘法算式,把一个数写成两个数相乘的积,乘数就是这个数的因数;也可以想除法算式,用一个数依次去除以1、2、3……,能得到整数商的,除数和商就是它的因数。写因数时根据算式有顺序的一对一对地写比较方便,不容易遗漏或重复。一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
流程11:组织下课
组织学生分批退场。
因数和倍数的教案设计篇六
在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。
教学目标定为以下几点:
(一)知识、技能目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
(二)情感、价值目标:
让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。
本课的教学重点是理解倍数和因数的含义与方法。
教学难点是掌握找一个数的倍数和因数的方法。
二、学生学习情况分析
本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
三、教法与学法指导
当今社会、人类的发展离不开素质教育,而实施素质教育必须“以学生为本”,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。
1、本节课理论性的知识比较多,课前让学生结合学案进行自学教师适当点拨。
2、 遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算的已有认识,在操作中引出倍数和因数的概念。
3、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。
4、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。
四、教学过程:
(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。
(二)情境体验,理解概念:分三个层次进行教学。(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。
(“从学生的角度看问题是教学取得实效的关键”。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。然后通过尝试做题巩固方法。)
接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。
五、课后反思
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我应该结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。但由于时间紧,我只口头说了一下这样学生找出所有的因数可能会慢些。如果能书写下来,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的,今后这方面要多注意。
因数和倍数的教案设计篇七
(2)学生写算式后汇报
师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?
师:还有其它摆法吗? 还有不同的乘法算式吗?猜一猜,他是怎样摆的?
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
二、创设情境,自主探究找因数和倍数的方法.
(一)探索找因数的方法
生说略。还有补充的吗?能不能说3是20的因数?
师:3、18、36都是36的因数,只有这3个吗?(1、2、……)
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9; 6
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗?
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)
师:36的因数还可以这样表示。(小黑板:板书集合圈图)
4、启迪思考。
师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
5、发现一个数因数的特征
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)
四、巩固练习。
1、判一判。(小黑板出示)
2、填一填。
因数和倍数的教案设计篇八
(2)学生写算式后汇报
师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?
师:还有其它摆法吗? 还有不同的乘法算式吗?猜一猜,他是怎样摆的?
学生交流几种不同的摆法。随着学生交流一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示。千万别小看这些乘法算式,我们这节课的研究就从这些算式中开始。我们就以最后一道乘法算式为例,(板书:3×4=12, 3和4在乘法算式叫(因数),那12呢?(积)因为: 3×4=12,我们可以说3是12的因数,那4(也是12的因数,),3和4都是12的因数,反过来呢?12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力。这就是我们今天所要研究的两个重要的概念:因数与倍数。(板书课题) (齐说3、4、12)
师:刚才这位同学的发言就象绕口令,你们听明白了吗?谁再来说说?
(4)质疑:如果我说12是倍数,1是因数,行吗?引导学生说出12是谁的倍数,1是谁的因数。
小结:倍数和因数是指两个数之间的关系,所以不能单独说谁是倍数,谁是因数。一定要说“谁是谁的倍数,谁是谁的因数。”
(5)举例内化
1、同桌出题互说。
师:你能写一道乘法算式,让同桌说说( )是( )的倍数,( )是( )的因数吗?生汇报。
2、老师根据学生出的一道乘法算式随机得到一道除法算式让学生说一说:( )是( )的倍数,( )是( )的因数。
小结:看来,乘法算式和除法算式中都存在着倍数和因数关系。
师指明:,为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。因此以后小数与分数就不讨论因数倍数关系。
(3)、小结:好了,刚才我们已经初步研究了因数和倍数,下面我们进一步来研究因数和倍数。
(一)探索找因数的方法
生说略。还有补充的吗?能不能说3是20的因数?
师:3、18、36都是36的因数,只有这3个吗?(1、2……)
师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数既不重复又不遗漏地全部找出来呢?因为这个问题有点难度,你可以独立完成也可以同桌合作完成,请你选择你喜欢的方式,找出36的所有因数,想一想怎么找不会遗漏?如果你全部找到了,填在作业纸的横线上。同时将你找因数的方法写在横线的下方框内。
生写后小组内交流。学生填写时师巡视搜集作业。
2、交流作业。(略)
出示学生的不同作业。交流找因数的方法。
师:出示36的因数有:1、36;2、18;3、12;4,9; 6
你知道这个同学是怎样找出36的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得36,就写上。
师:找到什么时候为止? 那为什么算到6,你们就不往后找了呢?相同的只写一个6。
师:他是用乘法找的,其他同学还有补充吗?
生:可以用除法找。用36除以1得36,36和1就是36的因数。再用36除以2……
师:老师发现不管是用乘法还是用除法,你们都是从几开始的啊?为什么?(板书:有序)
师:我也是跟你们一样很有顺序,从1开始找的`。我们一起来写出36的因数,好吗?根据算式,一对对找,找到了1就找到了36,找到了2就找到了18,依此类推,按从小到大的顺序排列。(板书:36的因数有:1、2、3、4、6、9、18、36。) 写的时候可以一头一尾地写。这样也可以做到答案的有序性。
师:36的因数还可以这样表示。(小黑板:板书集合圈图)
4、启迪思考。
师:现在你找一个数的因数有办法了吗? 怎样才能有序地、既不重复、又不遗漏地找出一个数的所有因数呢?在小组里说一说。
学生想到的方法可能是:从小到大找;一对一对找;找到两个数接近为止。
3、学生小结。好,我们已经说了那么多,谁能完整地说一说?
4、尝试练习:
5、发现一个数因数的特征
师:刚才我们找了36、20、18和5的因数,请大家仔细观察这4个数的所有因数。你发现这些数的因数有什么共同的特点?把你的发现告诉小组里的同学。
(先思考,再交流)还有吗?36的因数除了这些还有吗?说明一个数因数的个数是(有限的)(板书)
师(小结):一个非零自然数的最小因数是1,最大因数是它本身,因数的个数是有限的。
1、判一判。(小黑板出示)
2、填一填。