经典之所以永存,是因为它们能够触及人类内心最深处的情感和理念。欣赏经典作品要尊重作者的创作意图,但也可以有自己的独立见解。当我们阅读这些经典作品总结时,可以感受到文学的魅力和思想的力量,同时也能够激发我们自己的创作灵感。
二元一次方程组说课稿人教版篇一
本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
1.初步理解二元一次方程和一次函数两种数学模型之间的关系;
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.
二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;
通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则x小时后还剩余y吨水。
(1)请找出自变量和因变量
(2)你能列出x,y的关系式吗?
(3)x,y的取值范围是什么?
(4)在平面直角坐标系中画出这个函数的图形。(注意xy的取值范围).
2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?
(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?
x+y=5与y=?x?5表示的关系相同
探究方程与函数的相互转化
1.两个一次函数图象的交点坐标是相应的二元
一次方程组的解
(2)两个函数的交点坐标适合哪个方程?
?x?y?5(3).解方程组?验证一下你的发现。2x?y?1?
练习:随堂练习1。巩固由一次函数的交点坐标找相应的二元一次方程组的解。
2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。
?x?y?2(1)解?
?2x?y?5(2)以方程x+y=2
(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?
练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。
1.某公司要印制产品宣传材料。
印刷厂的费用。
(1)请分别表示出两个印刷厂费用与x的关系式。
(2)在同一直角坐标系中画出函数的图象。
(3)如何根据印刷材料的份数选择印刷厂比较合算?
想一想
内容:在同一直角坐标系内,一次函数y=x+1和y=x-2的图象(教材
么?
二元一次方程的解和相应的两条直线的关系2.
(1)观察发现直线平行无交点;
(2)小组研究计算发现方程组无解;
(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;
(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。
进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
以二元一次方程的解为坐标的点都在相应的函数图像上;
一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
方程组的解是对应的两条直线的交点坐标;
两条直线的交点坐标是对应的方程组的解;
第六环节作业布置
习题5.7
旧书不厌百回读,熟读精思子自知。以上就是给大家分享的13篇七年级数学二元一次方程组解法教案,希望能够让您对于二元一次方程的解法的写作更加的得心应手。
二元一次方程组说课稿人教版篇二
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程
(一)引入新课
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课
1、探究一次函数与二元一次方程的关系
填空:二元一次方程可以转化为________。
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式
解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。
解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题
(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。
(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。
5、旅游问题
古城荆州历史悠久,文化灿烂。
二元一次方程组说课稿人教版篇三
一。教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三。教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男_各几人吗?为什么?
(1)如果设本班男生x人,_y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比_多了2人。设男生x人,_y人。方程如何表示?x,y的值是多少?
3.本班男生比_多2人且男_共40人。设该班男生x人,_y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数_时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
二元一次方程组说课稿人教版篇四
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
难点:寻找等量关系
教学过程:
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
二元一次方程组说课稿人教版篇五
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法。
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:
1、解方程组
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()
(a)4(b)5(c)6(d)7
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3、解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2
附:板书设计
六、教学反思
二元一次方程组说课稿人教版篇六
一、填空题(每题2分,共20分)
1、把方程2x-y-5=0化成含y的代数式表示x的形式:x=.
2、在方程3x-ay=8中,如果是它的一个解,那么a的值为.
3、已知二元一次方程2x-y=1,若x=2,则y=,若y=0,则x=
.
4、方程x+y=2的正整数解是__________.
5、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
6、
7、如果方程组的解是,则,。
8、已知:,,则的值是。
9、若与是同类项,则
10、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组{___________________.
二、选择题:(每题3分,共18分)
11、下列各方程组中,属于二元一次方程组的是
a、b、c、d、、
12、方程组的解是()
a、b、c、d、
13、已知的解是,则()
a、b、c、d、
14、用加减法解方程组时,有下列四种变形,其中正确的是()
a、b、c、d、
15、既是方程2x-y=3,又是3x+4y-10=0的解是()
a、b、c、d、
16、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是()
a、14b、13c、12d、155
三、解方程组(每题6分,共24分)
17、用代入法解
18、用代入法解
19、加减法解
20、用加减法解、
21、二元一次方程组的解互为相反数,求m的.值.(8分)
四、用方程组解应用题(每题10分,共30分)
24、某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(13分)
二元一次方程组说课稿人教版篇七
本节课是在学习用代入法解方程组知识的基础上,又进一步来增加学生解方程组的方法与技巧。代入消元法对于学生来说较为容易掌握,但加减法难度就大了。本节课的教学重点与难点:掌握用加减消元法解二元一次方程组的方法,明确用加减法解元一次方程组的关键是必须使两个方程中某一个未知数的系数的.绝对值相等。在整个学习过程中,学生不仅学会了怎样用加减法解二元一次方程组,特别是在学习过程中学会了分类、比较、归纳的数学思想。
“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,具有承前启后的作用,一方面,它丰富了了一元一次方程、二元一次方程及二元一次方程组的相关知识,同时又是今后学习方程组知识应用的基础。通过本节课的教学,使学生明白用加减法解二元一次方程组的思想和具体方法步骤,但还需要通过强化练习,才能达到熟练。
二元一次方程组说课稿人教版篇八
本节课在《二元一次方程组》一章中占有重要地位。它是从现实生活中的数量关系产生的一个数学模型,是解决实际问题的有效策略。之前学生已经学过一元一次方程,之后还要学习一次函数、二次函数,因此二元一次方程组起着承前启后的作用。本节课主要是方法和思想的融合,下面就课改前后对这节课的教学作一反思:
新的教学理念要发挥学生的主体作用,充分参与探究知识的过程。在对二元一次方程组的解法探讨上,就利用中国古代鸡兔同笼的问题引入,让学生列出一元一次方程和二元一次方程组后,思考:一元一次方程2x+4(6-x)=22与二元一次方程组x+y=6(1)2x+4y=22(2)区别和联系?如何解方程组呢?让学生人组讨论、交流。教师深入到学生的讨论之中,引导学生从方程组与一元一次方程的结构或设未知数表示数量关系的角度观察。学生通过对比观察发现二者联系:y=6-x;用6-x代替方程(2)中的y,方程组就转化成一元一次方程2x+4(6-x)=22,进而求出x、y的值。学生从两种方程的不同中找出二者的联系,突破了难点,问题的提出是建立在学生现有知识的基础上,让学生在探究过程中体会化归思想。问题的设置符合学生认知规律,在学生已有知识——接一元一次方程的基础上,让学生再研究将二元一次方程组转化为一元一次方程的解法。大多数学生能在老师的引导下发现一元一次方程中的(6-x)就是方程组中的y,并且能用(6-x)代入y从而将方程组转化为一元一次方程。同时多数学生知代入消元法是解二元一次方程组的一种方法,消元化归的数学思想韵含在方法中,方法是有形的,思想是无形的。然后再出示一般形式二元一次的方程组进行练习,进一步体验消元化归思想。
从整节课来看,多数学生基本上能够运用所学新知解决问题,比课改前的效果好。但是对于学困生来说还是难度很大,学困生学习的问题时常困扰着我,今后要努力缩小学困生的面积方向发展。
七年级数学下册《加减法解二元一次方程组》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档