教案是教师在备课阶段制定的一份详细指导教学的书面材料,它起到了框架和指南的作用。针对小班学生的特点和需求,可以通过不同的教案来实施教学。
必修一数学教案充要条件篇一
1.把握写景抒情散文情景交融的特点,提高对情景交融意境的鉴赏能力。
2.学习作者运用语言的技巧:比喻、通感的巧妙运用,动词、叠词的精心选用。
3.训练整体感知、揣摩语言的能力。
过程与方法
1.本文语言精美,写景状物传神,应加强朗读训练,让学生自然地受到感染,体会文章的韵味。
2.理解关键语句,提高对作者在文中表达的思想感情的领悟能力。
情感态度与价值观
1.引导学生关注社会,追求理想。
2.培养学生健康的审美情趣。教学重点体味作品写景语言精练、优美的特点及其表达效果。教学难点品味、领悟课文情景交融,“景语”“情语”浑然一体的写作特点。
教学方法诵读法、感知法、品味法
教具准备课文录音带、多媒体课件
教学时间安排二个课时
第一课时
一、导语设计
李白在《月下独酌》里说:“花间一壶酒,独酌无相亲。举杯邀明月,对影成三人。”——在这里,“月”成了诗人排遣内心深处孤独寂寞的一种载体。
二、文本解读
(一)知识积累
1、朱自清的生平和创作。朱自清,原名自华,字佩弦,号秋实。祖籍浙江绍兴,1898年生于江苏东海。1903年随家定居扬州。1916年中学毕业后,考入北京大学预科班,次年更名“自清”,考入本科哲学系。毕业后在江苏、浙江等地的中学任教。上大学时,朱自清开始创作新诗,1923年发表的长诗《毁灭》,震动了当时的诗坛。1924年出版诗与散文集《踪迹》,1925年任清华大学教授,创作转向散文,同时开始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是诗人、散文家、学者,又是民主战士、爱国知识分子。毛泽东称他“表现了我们民族的英雄气概”。著作有《朱自清全集》。
3、借助注解和词典读懂《采莲赋》。
(二)信息筛选播放录音(或教师朗读)
1、学生边听边思考如何划分层次,并归纳大意。
明确:全文分三部分:
第一部分(1):月夜漫步荷塘的缘由。(点明题旨)
第二部分(2-6):荷塘月色的恬静迷人。(主体)
第三部分(7-10):荷塘月色的美景引动乡思。(偏重抒情)
(三)合作探究
师生共同解析第四段,看作者是怎样从多角度来描摹荷塘美景的?明确:先写满眼茂密的荷叶,次写多姿多态的荷花、荷香,最后写叶子和花的一丝颤动以及流水。层次井然,形象精确。——这是按观察的角度,视线由近及远、由上而下的空间顺序来写的。以上是顺序特点,细分析,还可以看出作者的匠心:a.抓静态与动态的结合,把荷塘写“活”。而且,作者笔下的景物都是“动”的,“静”不过是“动”的瞬间表现,扬静而情动。
b.抓可见与可想的结合,写出了散文的神韵。所谓“可想”,是指由“可见”引起的合理联想,把不可见的景物写得很有风采。
(四)能力提升
学生自己阅读第五段,合作讨论作者在这里是如何描写月色的。
明确:作者把荷叶和荷花放在月光下面,一个“泻”字,给人一种乳白色而又鲜艳欲滴的实感;一个“浮”字又表现出月光下荷叶、荷花那种缥缈轻柔的姿容。文章似乎仍在写荷叶、荷花,其实不然,作者是通过写叶、花的安谧、恬静,衬托出月色的朦胧柔和。又如文章写“黑影”和“倩影”,也是写月色,因为影是月光照射在物体上产生的。树影明暗掩映,错落有致,反衬月光轻盈荡漾。月色本是难以描摹的',所以作者透过不同的景物,从不同的角度去写月色,使难状之景如在眼前。
(五)分析鉴赏
1、第五段“酣眠”“小睡”各指什么?有无深层含义?
明确:“酣眠”比喻朗照,“小睡”比喻被一层淡淡的云遮住的月光。至于它的深层含义应该联系作者的心态来看,他不希望过于激烈的行为,他喜欢一种平和的心态,正如我们前面分析的那样,他做不到投笔从戎,他要寻找安宁平和的生活。对景物的喜好折射出作者的心态。
2、课文第五段,写月光用“泻”不用“照”“铺”,其好处是什么?(解答这个问题,不妨请学生把“照”和“铺”字代入句中读一遍,学生就知道了。
明确:“泻”是承上面比喻句“如流水一般”而来的,“泻”字有向下倾的势态。“照”字和“铺”字就没有这个效果。
3、作者为什么会由光和影联想到名曲?
明确:这是使用通感的修辞手法,光与影是视觉形象,作者却用听觉形象来比喻,这就是通感的一种,其相似点就是和谐。第四段写荷花的缕缕清香,微风传送,像远方飘来歌声一样动人心怀,这幽雅淡远的感受也只有在月夜独处时才会有,这也是通感,把嗅觉形象转化为听觉形象,它们之间的相似点就是似有似无、时断时续、捉摸不定。
三、课堂小结
所谓“意境”,指的是外界的人事景物(客观)与人的思想感情(主观)相融合而形成的一种天人合一、情景交融的境界。这种天人合一、情景交融越是天衣无缝、水乳交融,散文就越具有美感。《荷塘月色》做到了这一点,所以它具有一种意境美。
四、作业设计
背诵第四、五、六段。
第二课时
一、导语设计
二、文本解读
(一)合作探究指导学生理解“通感”的特点及其作用。明确:通感:就是人的各种感觉之间的交流、沟通、转移。钱钟书先生说过,“在日常经验里,视觉、听觉、触觉、嗅觉、味觉往往可以彼此打通或交通,眼、耳、舌、鼻、身,各个官能的领域可以不分界限。颜色似乎会有温度,声音似乎会有形象,冷暖似乎会有重量,气味似乎会有锋芒……”(《通感》。)例如:“微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声似的。”
a.本体——花香(嗅觉)喻体——渺茫的歌声(听觉)b.作用:把花香的特点写清了,生动形象。
c.相似点:立于微风中嗅馨香(时有时无)——听远处高楼传来的歌声(时断时续)再如:“但光与影有着和谐的旋律,如梵婀玲上奏着的名曲。”
(二)能力提升
1、文章抒情的语句主要有哪些?
明确:第一段:这几天心里颇不宁静。
第二段:没有月光的晚上,这路上阴森森的,有些怕人。今晚却很好,虽然月光也还是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我爱热闹,也爱冷静;爱群居,也爱独处……便觉是个自由的人。……我且受用这无边的荷香月色好了。
第六段:但热闹是它们的,我什么也没有。
第八段:这真是有趣的事,可惜我们现在早已无福消受了。
第十段:这令我到底惦着江南了。
2、作者的思想感情在文中是怎样变化的?
明确:因为这几天心里颇不宁静,忽然想起日日走过的荷塘,在满月的光里,总该另有一番样子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚却很好,我可以享受这无边的荷香月色。荷塘月色的确很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦胧和谐,令人心醉。荷塘四周非常幽静,只有树上的蝉声和水里的蛙声最热闹,而我什么也没有。忽然又想起采莲的事情来了,那真是有趣的事,可惜我们现在早已无福消受了。采莲令我惦着江南了,这样想着回到了家里。有人把这篇文章所表现的思想感情概括为“淡淡的喜悦,淡淡的哀愁”,是很贴切的,但作者的感情底色是“不宁静”。
(三)分析鉴赏
1、第六段写“热闹是它们的,我什么也没有”,作者为什么会如此伤感?
明确:作者想寻找美景,使自己宁静,平息自己矛盾的心情而不得,当然伤感。
2、第七段采莲与文章主体有什么关系?为什么会想起采莲的事情?
明确:以采莲的热闹衬托自己的孤寂,且荷莲同物,作者又是扬州人,对江南习俗很了解。
明确:一方面有照应文章开头的作用,但主要目的还是以静写动,以静来反衬自己心里的极不宁静。心里的不宁静,是社会现实的剧烈动荡在作者心中引起的波澜。全篇充满着动与静的对立统一:社会的动荡与荷塘一隅的寂静,内心的动荡与内心的宁静形成对立统一,文章开头心里不宁静,在月夜荷塘幽美的景色的感染下趋于心静,走出荷塘又回到不宁静的现实中来,也形成对立、转化。
三、课堂小结
这篇作品获得人们特别赞赏的原因,就在于它写景特别工细。朱自清在表现月色下的荷塘和荷塘上的月色这两个组成部分的时候,还进一步作更精细的分解剖析,把这两个部分再分解剖析成许多更小的部分,然后逐一描写并且从景物观赏者的视觉、嗅觉、听觉,以及景物的静态、动态等角度,写出它们的种种性状,从而把景物表现得格外细腻。
四、作业设计
研究性学习参考论题。请你就以下论题中的一个或另拟论题,从网络上寻找有关资料,写出你的研究结果。
1、走近朱自清
2、朱自清为什么“不宁静”?
3、谈《荷塘月色》的写景艺术
4、谈《荷塘月色》的感情线索
必修一数学教案充要条件篇二
2、结合已学过的数学实例,了解类比推理的含义;
3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、
一、课前准备
问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是
……所以n边形的内角和是
新知1:从以上事例可一发现:
叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。
新知2:类比推理就是根据两类不同事物之间具有
推测其中一类事物具有与另一类事物的性质的推理、
简言之,类比推理是由的'推理、
新知3归纳推理就是根据一些事物的,推出该类事物的
的推理、归纳是的过程
例子:哥德巴赫猜想:
观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
归纳推理的一般步骤
1通过观察个别情况发现某些相同的性质。
2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※典型例题
例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。
变式1观察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……
你能猜想到一个怎样的结论?
变式2观察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一个怎样的结论?
例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式
例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、
圆的概念和性质球的类似概念和性质
圆的周长
圆的面积
圆心与弦(非直径)中点的连线垂直于弦
与圆心距离相等的弦长相等,
※动手试试
2如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
三、总结提升
※学习小结
1、归纳推理的定义、
必修一数学教案充要条件篇三
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
必修一数学教案充要条件篇四
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题、
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
必修一数学教案充要条件篇五
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
一、练习讲解:《习案》作业十三的第3、4题
(精确到0·001)·
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
四、作业《习案》作业十四及十五。
必修一数学教案充要条件篇六
一、自主学习
1. 阅读课本 练习止.
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3. 完成 练习
4. 小结.
二、方法指导
1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
一、提问题
1. 对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明.
二、变题目
1. 试求下列函数的反函数:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函数的定义域:
(1) ; (2) ; (3) .
3. 已知 则 = ; 的定义域为 .
1.对数函数的'有关概念
(1)把函数 叫做对数函数, 叫做对数函数的底数;
(2)以10为底数的对数函数 为常用对数函数;
(3)以无理数 为底数的对数函数 为自然对数函数.
2. 反函数的概念
在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.
3. 与对数函数有关的定义域的求法:
4. 举例说明如何求反函数.
一、课外作业: 习题3-5 a组 1,2,3, b组1,
二、课外思考:
1. 求定义域: .
2. 求使函数 的函数值恒为负值的 的取值范围.
必修一数学教案充要条件篇七
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
必修一数学教案充要条件篇八
(一)课标要求
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色
1.数学思想方法的重要性
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的`问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
3.重视加强意识和数学实践能力
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
(三)教学内容及课时安排建议
1.1正弦定理和余弦定理(约3课时)
1.2应用举例(约4课时)
1.3实习作业(约1课时)
(四)评价建议
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
必修一数学教案充要条件篇九
教学准备
教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
教学重难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
教学过程
必修一数学教案充要条件篇十
1.2.1投影与三视图
课型
新课
教学目标
1.了解中心投影和平行投影的概念;
3.简单组合体与其三视图之间的相互转化.
教学过程
教学内容
备注
一、
自主学习
1.照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识.
二、
质疑提问
下图中的手影游戏,你玩过吗?
光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.
一、中心投影与平行投影
思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?
投影的分类:
把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:
正视图:光线从几何体的前面向后面正投影,得到的投影图.
侧视图:光线从几何体的左面向右面正投影,得到的.投影图.
俯视图:光线从几何体的上面向下面正投影,得到的投影图.
几何体的正视图、侧视图和俯视图,统称为几何体的三视图.
三、
问题探究
思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?
思考3:圆柱、圆锥、圆台的三视图分别是什么?
思考5:球的三视图是什么?下列三视图表示一个什么几何体?
例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.
四、
课堂检测
五、
小结评价
1.空间几何体的三视图:正视图、侧视图、俯视图;
3.三视图的应用及与原实物图的相互转化.
必修一数学教案充要条件篇十一
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
必修一数学教案充要条件篇十二
(1)掌握与()型的绝对值不等式的解法.
(2)掌握与()型的绝对值不等式的解法.
(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;
教学重点:型的不等式的解法;
教学难点:利用绝对值的意义分析、解决问题.
教学过程设计
教师活动
学生活动
设计意图
一、导入新课
【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?
【概括】
口答
绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.
二、新课
【提问】如何解绝对值方程.
【质疑】的解集有几部分?为什么也是它的解集?
【练习】解下列不等式:
(1);
(2)
【设问】如果在中的,也就是怎样解?
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
所以,原不等式的解集是
【设问】如果中的是,也就是怎样解?
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
,或,
由得
由得
所以,原不等式的解集是
口答.画出数轴后在数轴上表示绝对值等于2的数.
画出数轴,思考答案
不等式的解集表示为
画出数轴
思考答案
不等式的解集为
或表示为,或
笔答
(1)
(2),或
笔答
笔答
根据绝对值的意义自然引出绝对值方程()的解法.
由浅入深,循序渐进,在型绝对值方程的基础上引出()型绝对值方程的解法.
针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑.
落实会正确解出与()绝对值不等式的教学目标.
在将看成一个整体的关键处点拨、启发,使学生主动地进行练习.
继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误.
三、课堂练习
解下列不等式:
(1);
(2)
笔答
(1);
(2)
检查教学目标落实情况.
四、小结
的解集是;的解集是
解绝对值不等式注意不要丢掉这部分解集.
五、作业
1.阅读课本含绝对值不等式解法.
2.习题2、3、4
课堂教学设计说明
1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.
2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.
3.针对学生解()绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.
必修一数学教案充要条件篇十三
(1)理解函数的概念;
(2)了解区间的概念;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
必修一数学教案充要条件篇十四
1.使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。
2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。
3.在学生感受数学美的同时,激发学习的爱好,培养学生乐于求索的精神。
教学重点,难点
重点是奇偶性概念的形成与函数奇偶性的判定
难点是对概念的熟悉
教学用具
投影仪,计算机
教学方法
引导发现法
教学过程
一.引入新课
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质。从什么角度呢?将从对称的角度来研究函数的性质。
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等。)
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称。最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律。
二.讲解新课
2.函数的奇偶性(板书)
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。教师可引导学生先把它们具体化,再用数学符号表示。(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立。最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整。
(1)偶函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做偶函数。(板书)
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步熟悉)
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义。
(2)奇函数的定义:假如对于函数的定义域内任意一个,都有,那么就叫做奇函数。(板书)
(由于在定义形成时已经有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)
例1。判定下列函数的奇偶性(板书)
(1);(2);
(3);;
(5);(6)。
(要求学生口答,选出12个题说过程)
解:(1)是奇函数。(2)是偶函数。
(3),是偶函数。
学生经过思考可以解决问题,指出只要举出一个反例说明与不等。如即可说明它不是偶函数。(从这个问题的解决中让学生再次熟悉到定义中任意性的重要)
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述。即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性。
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论。
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件。(板书)
由学生小结判定奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明。
例2。已知函数既是奇函数也是偶函数,求证:。(板书)(试由学生来完成)
(4)函数按其是否具有奇偶性可分为四类:(板书)
例3。判定下列函数的奇偶性(板书)
(1);(2);(3)。
由学生回答,不完整之处教师补充。
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数。
(2)当时,既是奇函数也是偶函数,当时,是偶函数。
(3)当时,于是,
当时,,于是=,
综上是奇函数。
教师小结(1)(2)注重分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可。
三.小结
1.奇偶性的概念
2.判定中注重的问题
四.作业略
五.板书设计
2.函数的奇偶性例1.例3.
(1)偶函数定义
(2)奇函数定义
(3)定义域关于原点对称是函数例2。小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类
探究活动
(2)判定函数在上的单调性,并加以证实。
在此基础上试利用这个函数的单调性解决下面的问题:
必修一数学教案充要条件篇十五
1。了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2。通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3。通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
必修一数学教案充要条件篇十六
(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的'单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
必修一数学教案充要条件篇十七
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一.基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.
二.问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300km的海面p处,并以20km/h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60km,
并以10km/h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一.小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练
必修一数学教案充要条件篇十八
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
会从实际情境中抽象出一元二次不等式模型.
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
会从实际情境中抽象出二元一次不等式组.
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.