编写初一教案时,应根据教学目标和学生的实际情况合理选择教学方法和教学资源。接下来,我们将分享一些初一教案的教学心得和经验,希望能够给大家带来一些启示。
专业初一数学湘教版教案大全(19篇)篇一
1.火车票价是根据两站距离的远近而定的,距离越远,票价越高.如果一段铁路上共有五个站点,每两站间的距离都不相等,那么这段铁路上的火车票价共有________种.
知识点2线段、直线的性质。
2.建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线.这个实例体现的数学知识是()。
a.两点之间,线段最短。
b.过已知三点可以画一条直线。
c.一条直线通过无数个点。
d.两点确定一条直线。
专业初一数学湘教版教案大全(19篇)篇二
4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.
教学重点能运用有理数加法法则,正确进行有理数加法运算.
教学过程(教师)。
一、创设情境。
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
1.试一试。
甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:
2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.
你还能举出一些应用有理数加法的实际例子吗?
二、探究归纳。
1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________。
2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________。
请用数轴和算式分别表示以上过程及结果:
算式:________________________。
仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.
4.观察、思考、讨论、交流并得出有理数加法法则.
专业初一数学湘教版教案大全(19篇)篇三
评注(1)看到经过计算得出的结果,恐怕很多同学会有出乎意料的感觉:这个结果与我们预先想到的结果大不相同,这说明了学习数学知识既是很有趣,同时又是很有用处的.
无论是数学学习中,还是在生活的其他方面,直觉都是很重要的,但是只有直觉,而不依靠数学知识、数学方法也是不行的.
有一则数学趣闻同样说明了这个道理.
印度宰相发明了一种妙趣无穷的国际象棋,国王舍罕决定重赏他.国王把宰相召进宫里,对他说:“你发明了这种绝妙的游戏,我要重重地奖赏你,你要什么,凡是你想得到的,我都可以满足你的要求!”
宰相想了想,微笑着对国王说道:“陛下,请您在这张棋盘的第一个小格内,赏给我1粒麦子,在第二个小格内2粒,第三个小格内4粒,第四个小格内8粒,照这样下去,每一小格是前一小格的2倍,请把摆满棋盘64个小格的所有麦子都赏给您的仆人吧!”
开场白:
同学们,祝贺你步入一个新的学习阶段.在这里,你将更好地与数学交朋友.在你的生活中数学无处不在,你会发现数学能给你带来越来越多的惊喜和快乐.数学能让你变得越来越聪明,让我们一起进入数学的世界,领略数学的风采.
引入:
实践探索一:
2.投影:在我们的上学路上能看到许多交通标志:
请你说出你熟悉的图形,从中你得到什么信息?
专业初一数学湘教版教案大全(19篇)篇四
2.会用计算器进行较繁杂的有理数混合运算.
教学重点。
也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:
先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算.
你会根据有理数的运算顺序计算上面的算式吗?
专业初一数学湘教版教案大全(19篇)篇五
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.。
难点:正确理解有理数与数轴上点的对应关系.。
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.。
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.。
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.。
课堂练习。
示出来.。
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.。
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
专业初一数学湘教版教案大全(19篇)篇六
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;。
3.会用科学记数法表示较大的数.
教学重点。
1.有理数乘方的意义,求有理数的正整数指数幂;。
2.用科学记数法表示较大的数.
教学难点有理数乘方结果(幂)的符号的确定.
教学过程(教师)。
问题引入。
乘方的有关概念。
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
专业初一数学湘教版教案大全(19篇)篇七
1.图形的三种变化方式:点动成_______,线动成_______,_______动成体.
2.矩形绕其一边旋转一周形成的几何体叫______________,直角三角形绕其中一条直角边旋转一周形成的几何体叫_______.
3.右图中的图形2可以看作图形1向下平移_______格,再向左平移格得到.
4.下列现象中是平移的是()。
a.将一张纸沿它的中线折叠。
b.飞碟的快速转动。
c.电梯的上下移动。
d.翻开书中的每一页纸张。
专业初一数学湘教版教案大全(19篇)篇八
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
一、新课讲授
投影:图形见课本p84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本p85.7.3―6.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本p86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本p90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形abcdef的所有对角线.
专业初一数学湘教版教案大全(19篇)篇九
教学目标:
1、在具体的生活情境与实际操作中,感知角的基本特等特征。
2、利用角的特征来发现角、画角、创造角。
3、在小组合作中养成倾听的习惯,培养口头发达的能力。
教学重点:
1、认识角。
2、从直观感知中抽象出角的图形和正确的画角。
教学过程:
一、组织教学,引入新课:
在黑板上写上星级小组,同学们看这是什么?(拿出一个五角星),喜欢这个吗?那怎样的小朋友可以得到五角星呢?今天我们要开展星级小组的评比,看看哪个小组能获得今天的星级小组,有信心吗?(生:有)同学们都有信心,每个组加上一个五角星,现在是几星级了?下面张老师先请同学们看一段动画片,可要看仔细了。
课件播放引入。
师:屏幕上哪些图形我们已经学过了,它们分别叫什么?
生1:这些图形分别是长方形、正方形、圆、三角形。
师:这是什么图形呢?(课件出示角)。
生回答:这个图形是角。
师:看来同学们都知道它叫角,我们今天就来认识角。(板书:角的初步认识)。
生1:操场上有老师、老爷爷、小朋友。
师:你发现了角吗?哪些地方有角,谁来指一指?(课件演示)。
生1:老师手中的三角板上有角。
生2:老爷爷手中的剪刀上有角。
生3:钟面上有角、小朋友们做操时两手之间形成了角、球场上有角……。
师:刚才第三组的同学发言特别积极,第一组和第四组的同学听得特别认识,给他们分别奖励一个一角星,现在是几星级了?还是一星级的不要灰心,因为还有机会。
师:在我们的校园里有角,在我们的身边、在我们的周围,在许多物体上面都有角。
二、观察实践、探究新知:
1、感知角。
师:下面我们继续学习。拿出三角板,看看上面有几个角?互相指一指,看谁指得好。
请一个学生拿三角板到前面指给同学们看。师:大家看好了,看他指的是否和大家的一样?(生指)。
师:同意的给他鼓鼓掌。请同学们照样指一指角。
生:尖尖的、直直的。(师板书)。
师:下面请同学们在自己的身边找一找,哪些地方有角?
生1:黑板的周围有角。
生2:数学书的封面上有角。
生3:教室的墙角边上有角。
师:大家找得很好,老师这儿有几幅图,看谁能找出角,把它指出来?(课件出示剪刀图)。
生1:指剪刀头。(同意吗?)生:不同意。谁来说说不同意的理由。
生2:有一条边是弯弯的,不能算。
师:回答得很好,给第二个小组加上一个五角星。
生3:指剪刀把上突出的部分。(这个是角吗?不是)。
师:到底这个角藏在哪里呢?
生4:指剪刀张开的部分。(课件显示找正确了)。
师:大家一起来做运动,描一描角。
师:这个角找得好辛苦呀!下面来看看这个。(课件显示插一根吸管的可乐罐)生指吸管上的角。
师:你也找对了,对的给自己鼓励一下。看看钟面上,出示第三幅图:一个钟面。生指分针和时针的夹角。
2、认识角的各部分名称。
师:很好,我们一下子就找到了三个角。现在我们把这些角的外衣脱掉,来仔细看看。(课件显示三个角,逐渐隐去外形)。
师:指第一个角,这个点叫什么?(生:起点。顶点、点)师板书(顶点)这两条呢?(生:边)师板书(边)。
师:请同学们指出第二个角和第三个角的顶点和2条边,看你指的是否和大家的一样。
小结:一个角有几个顶点、几条边?(一个顶点、2条边)。
师:角爷爷过生日,设宴请客,客人都是角家庭的成员,瞧(课件出示)这些图形都说自己是角,赶来参加宴会,请你用孙悟空般的火眼金睛帮角爷爷判断下面的图形,哪些是角?哪些不是角?是的请露出你的笑脸,不是的用哭脸表示。逐个判断:1、两条边没有连上离得较远;2、正确的;3、一边是曲线的;4、两条边没连上;5、正确的。(学生逐个说明理由)。
师:刚才大家表现得很出色,每个小组再加一个五角星。
3、折角、做角。
生活动:自己用圆片折角、摸角,说说它的顶点和边,选择个别学生折的角贴在黑板上。
师:你们学得他们折的角怎么样?(同学们互相评价)。
生活动:用小纸条做角、玩角,然后小组讨论、汇报。
生:它们是为了谁大谁小而吵的,后来通过比较,它们都是一样大的,它们又成了好朋友。
师:从这个故事中你明白了什么?
生:这个故事告诉我们:角的大小与它的边的长短没有关系,而是跟角的两边分开的程度有关,角的两边叉开的越大,角就越大,两边叉开得越小,角就越小。
师:这个同学回答得非常好,给他们小组加一个五角星。谁能像他这样说说。同桌互相说一说。
4、画角。
师:你们真厉害,解决了那么多问题,那你能不能把角画出来呢?
学生活动:画角,师巡视,指导。
师:请同学们想一想,你是怎样画角的?
生:先画……,再画……。
师小结:先画一个顶点,用尺子向不同的方向画两条线,就画成了一个角。
三、归纳提高:
师:通过刚才的研究,说一说你有什么收获?
生自由说说,然后全班交流。
生:我们认识了一个新的图形――角。
生:我知道一个角有个尖尖的顶点还有两条直直的边。
生:我知道了角的大小与两条边张开的大小有关,我们还学会了画角的方法。
师:同学们说得真好,下面我们用学到的知识来解决几个问题:下面的图形中各有几个角,请你把它找出来,说给同桌听听。(练习八第2题。)。
四、质疑交流:
学生自由质疑、交流。
五、布置课外作业,下课。
《角的初步认识》一课,为学生提供了观察、操作等主动参与的机会。使每位同学都有平等的机会在小组中讨论,自由发言,认真地倾听,学习别人的优点,改正自己的缺点,给学生获得了更多的自我表现的机会,充分展示每个学生的才能,使不同层次的学生获得不同程度的成功,使学生注意力持久,培养了学生的倾听习惯,使倾听变成了一种积极主动的行为。
专业初一数学湘教版教案大全(19篇)篇十
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值。
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较。
知识重点绝对值的概念。
教学过程(师生活动)设计理念。
设置情境。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反。
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
验数学知识与生活实际的联系.
专业初一数学湘教版教案大全(19篇)篇十一
2.初步培养学生观察、分析和抽象思维的能力。
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
一、从学生原有的认知结构提出问题。
1.庇么数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x—3)。
(3)乙数比x的倒数小7;(—7)。
(4)乙数比x大16%((1+16%)x)。
(应用引导的方法启发学生解答本题)。
二、讲授新课。
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。
解:设甲数为x,则乙数的代数式为。
(1)x+5(2)2x—3;(3)—7;(4)(1+16%)x。
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x。
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积。
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。
解:设甲数为a,乙数为b,则。
(1)2(a+b);(2)a—b;(3)a2+b2;
(4)(a+b)(a—b);(5)(a+b)(b—a)或(b+a)(b—a)。
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数。
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2。
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的.;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。
分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a—1);(3)(5a+7);(4)a2+a。
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:(1)m(m+6)个;(2)(m)m个。
三、课堂练习。
1鄙杓资为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。
2庇么数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。
3庇么数式表示:
(1)与a—1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。
〔(1)25—(a—1);(2);(3)2x2+2;(4)y(y+3)薄。
四、师生共同小结。
首先,请学生回答:
1痹跹列代数式?2绷写数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业。
1庇么数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2币阎一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究。
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)。
专业初一数学湘教版教案大全(19篇)篇十二
用因式分解法解一元二次方程.
难点。
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入。
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知。
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
三、巩固练习。
教材第14页练习1,2.
四、课堂小结。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置。
教材第17页习题6,8,10,11。
专业初一数学湘教版教案大全(19篇)篇十三
2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。
教学过程:
一、导入新课。
出示图,生活中含有角的物体。
师:“你看到了什么?谁能说一说?”
师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”
师:“是吗?让我们来看一看。”
师:“果然如此!你观察得真仔细。”
“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”
贴上课题“角”,学生交流后回答:略。
师:“仅仅知道这些,你们就满足了吗?”
“那你们还想知道哪些有关角的知识呢?“。
师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”
二、新课教学。
师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”
学生在卡片上画角。
师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”
师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”
小组合作学习,给角分类。教师巡视,做好记录。
师:“哪一组愿意汇报?”
小组汇报,汇报时请其用三角尺验证。贴出直角。
师:“你们认为他们分的怎么样?”
师:“你能给比直角小的角起一个名字吗?”
学生起名。
师:“在数学上,我们把比直角小的角叫做锐角。”
贴上“锐角”。(钝角同上。)。
师:“对于这些,你们还有什么想问的问题吗?”
学生提问。
师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”
贴上“的分类”。
三、巩固练习。
师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”
学生写角的名称。
师:“写好的人互相说一说你刚才都画了哪些角。”
学生互说,教师指名说。
师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”
请一名学生在实物投影上写。集体订正。
师:“让我们回到生活中的物体。”
点击,回到生活中的物体。
师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”
师:“生活中还有哪些地方有这些角?”
师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”
学生合作拼。
师:“能拼成什么角?你愿意上来拼一拼吗?”
学生在黑板上用学具拼。
师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”
四、小结。
师:“通过今天的学习,你又知道哪些有关角的知识?”
专业初一数学湘教版教案大全(19篇)篇十四
教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:对概念的理解及对数据收集整理。
教学难点:总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课。
二、新课。
1.抽样调查的意义。
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义。
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项。
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
专业初一数学湘教版教案大全(19篇)篇十五
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
专业初一数学湘教版教案大全(19篇)篇十六
教学目标:
1、知识目标:初步认识角,知道角的各部分名称,知道角的大小与两边叉开大小有关,与两边的长短无关。
2、能力目标:培养学生动手操作能力,使学生学会画角、做角,能从实物或平面图形中辨认角。
3、情感目标:培养学生学习数学的兴趣,以及认真倾听他人意见,虚心向他人学习的习惯。并让学生体会到数学源于实践的思想.
教学重点:初步认识角,知道角的各部分名称,学会画角和能从实物或平面图形中辨认角。
教学难点:初步认识到角的大小与两边叉开大小有关,与边的长短无关。
教具学具:课件、手工纸、活动角。
教学流程。
一、创设情境,导入新课:
生:三角形。
师:对,三角形是我们以前学过的平面图形中的一种。在三角形中你能找到什么?
生:角。
师:角也是平面图形中的一种,这节课我们就来学习和研究角。
板书:角的初步认识。
二、联系实际,整体感知角。
1、师:角无处不在,在我们的校园中就有很多,不信你就试着找找吧!(多媒体演示:美丽校园的主题图。突出:门窗上的角、钟面上的角、操场中场地的角、小朋友做操时上下肢组成的角……)。
2、师:同学们观察得很仔细,找到了这么多角。在我们的日常生活中许多物品上也有角,我们一起来看看。(多媒体出示图:剪刀、饮料吸管和水管实物图片,指出在物品上显出角)。
3、师:在我们的教室中也有角你能找一找,并试着把它找出来吗。
三、抽象图形,形成表象。
1、指名指角。
生:不是,这是个点。
4、想看看老师是怎样指得吗?(师示范指角)。
5、师:请同学们从身边选取一个角,像老师这样来指一指。
四、自主探究,创造角。
1、师:刚才我们认识了角,你们想不想自己动手创造一个角。
2、学生用不规则的纸折角。
3、集体交流自己创造的角,完整的指出每个角。
4、摸摸你折的角有什么感觉和发现?
5、学生汇报。
6、师:尖尖的地方是角的顶点,两条直直的线是角的边。
五、动手操作,画画角。
2、教师示范画角,边画边讲解怎么画角。(课件演示)。
3、学生尝试画角,指几名同学板画。(学生看书,勾画出画角的方法,边画边读。)。
小结:角是由一个顶点和两条边组成的。
六、游戏活动,比比角。
师:想玩游戏吗?我们就来玩一个超级变变变的游戏。
1、师:变变变,把角变大,变更大。变变变,把角变小,变更小。
2、小组内玩这个游戏,并说说发现了什么?
3、指名汇报:角的大小与角的两条边张开的大小有关,张开的越大,角就越大,张开的越小,角就越小。
4、同桌两人把角张开同样的角度,看看会发现什么?
5、生汇报:角的大小和边的长短无关。
6、师总结。
七、巩固练习。
课件演示;练习八中第7题。
八、课堂总结。
同学们,这节课我们一起认识了角,动手做了角,画了角,还在生活中找到了很多的角,其实,只要你善于观察,生活中处处都有数学。
专业初一数学湘教版教案大全(19篇)篇十七
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点。
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间。
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。
教科书第17页练习1、2。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
教科书习题6.3.2,第1至5题。
专业初一数学湘教版教案大全(19篇)篇十八
【教学目标】。
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】。
一、本讲主要学习内容。
1、负数的意义及表示2、零的位置和地位。
3、有理数的分类4、数轴概念及三要素。
5、数轴上数与点的对应关系6、数轴上数的比较大小。
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容。
1、负数的意义及表示。
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位。
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类。
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数。
整数零正有理数。
有理数负整数或有理数零。
分数正分数负有理数。
负分数。
专业初一数学湘教版教案大全(19篇)篇十九
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
本节课重点是掌握已知对称轴l和一个点,要画出点a关于l的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
动手实践。
一、先复习轴对称图形的定义,以及轴对称的相关的.性质:
二、探索练习:
1.提出问题:
吸引学生让学生有一种解决难点的想法。
2.分析问题:
问题转化成:已知对称轴和一个点a,要画出点a关于l的对应点,可采用如下方法:
在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:
1.如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
2.试画出与线段ab关于直线l的线段。
3.如上图,已知直线mn,画出以mn为对称轴的轴对称图形。
小结:本节课学习了已知对称轴l和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。
导学案:5.4利用轴对称设计图案。
一、学习目标:
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
二、学习重点:本节课重点是掌握已知对称轴l和一个点,要画出点a关于l的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形.
三、学习难点:掌握有关画图的技能及设计轴对称图形是本节课的难点。
(一)预习准备。
(1)预习书128~129页。
思考:如何作轴对称图形。
(2)预习作业:
补全下列图形,使它成为轴对称图案。
(二)学习过程:
轴对称的性质:在轴对称图形中,
(1)对应点所连的线段被对称轴_______。
(2)对应线段_______,对应角_______。
1.下图中给出了图案的一半,虚线是这个图案的对称轴.
(1)你能猜出整个图案的形状吗?
(2)画出它的另一半,证实你的猜想.
2.如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
3.把下列各图补成以l为对称轴的轴对称图形.