高一教案的编写需要考虑知识的有机组织和学生的学习特点,以促进学生的主动学习和知识的掌握。高一教案的范文可以帮助大家更好地把握教学重点和难点。
优秀新北师大版高一数学教案(模板13篇)篇一
本课是北师大版二年级上册第七单元乘法口诀(二)中的内容,是在学生学习了2~6的乘法口诀的基础上进行学习的。此时学生对口诀的编制具有了一定的能力,因此对教材进行了重新创设教学内容,把7的乘法口诀的编写和练习融为一体。使学习内容更具挑战性。
优秀新北师大版高一数学教案(模板13篇)篇二
知识技能1、了解无理数及实数的概念,并会对实数进行分类.
2、知道实数与数轴上的点具有一一对应关系.
3、学会使用计算器探求将有理数化为小数形式的规律.
4、学会使用计算器估算无理数的近似值.
5、学会使用计算器计算实数的值.
数学思考。
1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.
2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.
3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.
4、经历对实数进行分类,发展学生的分类意识.
5、通过使用计算器估算无理数的近似值和计算实数的活动,使学生建立对无理数的初步数感.
解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.
2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.
3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.
情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知。
欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.
2、通过了解数系扩充体会数系扩充对人类发展的作用.
3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新。
问题.
重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.
难点对无理数的认识.
教学流程安排。
活动流程图活动内容和目的。
活动1通过对有理数探究,激发进一步学习的欲望.
通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.
活动3通过教师演示和学生活动,建立实数与数轴上的点的一一对应.通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.
活动4用计算器估算无理数近似值.在使用计算器估算和验证的过程中,使学生学会用计算器求无理数近似值的方法,渗透用有理数逼近无理数的思想,加深对无理数的理解.
活动5用计算器求实数的值.学会用计算器求实数的精确值或近似值.
活动6小结归纳,课后作业.回顾梳理,总结本节课所学到的知识,完善原有认知结构,升华数学思想.
教学过程设计。
问题与情境师生行为设计意图。
[活动[活动1]。
通过对有理数探究,激。
发进一步学习的欲望.
问题:。
(1)利用计算器,把下列有理数3,-,,,,转换成小数的形式,你有什么发现?
(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数?教师提出问题(1).
教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.
教师提出问题(2).
学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.
活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征.计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.
通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.
注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。激发学生的求知欲。
[活动2]。
通过对数的归纳辨析,教师引出无理数和实数的概念,并引导学生学会对实数如何分类.
问题:。
你能对我们学过的数进行合理的分类吗?教师引出无理数和实数的概念,。
教师引导学生独立思考:当对数的认识扩充到实数范围之后,怎样在实数范围内对学过的数进行分类整理?教师在参与讨论时启发学生类比有理数的分类,同时鼓励学生相互补充、完善,并帮助总结出实数的分类结构图.
实数。
活动2中,教师应关注:。
(1)学生对有理数和无理数的概念以及它们之间的差异与联系的了解程度;。
(2)学生在讨论中能否发表自己的见解,倾听他人的意见,并从中获益;。
(3)学生是否能用语言准确地表达自己的观点.
通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.
通过学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数整体性的认识.
[活动3]。
通过教师演示和学生活动,建立实数与数轴上的点的一一对应。
问题:。
教师提出问题.
学生独立思考后小组讨论交流,学生借助的得出过程进行探究,。
教师参与并指导实际操作(利用多媒体课件演示圆滚动的过程).
本节由于学生知识水平的限制,教师直接给出有理数和无理数与数轴上的点是一一对应的结论.
活动3中,教师应关注:。
(1)学生利用边长为1的正方形的对角线为的结论,在数轴上找到表示的点;。
(3)学生是否主动参与探究活动,是否能用语言准确地表达自己的观点.本次活动是从学生已有的知识水平出发,找到数轴上的位置,体会无理数也可以用数轴上的点来表示.
借助数轴对无理数进行研究,从形的角度,再一次体会无理数.同时也感受实数与数轴上的点的一一对应关系.进一步体会数形结合思想.
通过多媒体教学使学生了解无理数数也可以用数轴上的点来表示,从而引发学生学习兴趣.
通过探究活动,在数轴上找到了表示无理数的点,使学生了解无理数的几何意义.
数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,让学生进行探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、抽象、概括的思维能力.
[活动4]。
用计算器估算的近似值.
1、讨论:到底有多大?
问题:。
(1)哪个数的平方最接近3?
(2)在哪两个数之间?
并将讨论结果,发现结论通过表格明晰出来.(填〉,〈).
〈_3__〉3。
〈_3__〉_3。
〈_3_〉_3。
〈_3_〉_3。
2、验证.
用计算器估算的近似值.
教师利用有理数逼近无理数的方法,引导学生逐步估算的范围.
学生通过用计算器估算,可以寻找到的范围.
用计算器的计算功能估算的近似值。在此使学生对无理数有进一步的感知.
活动4中,教师应关注:(1)学生能否估算出。
的范围;。
(2)学生是否学会了用。
计算器估算无理数近似值的方法.如何求无理数的近似值?在此给出来两种估算的方法:对于第一种方法,利用夹逼的办法,通过分析的一系列不足近似值和过剩近似值来估计它的大小,加深对无理数的理解.而第二种方法,则是直接用计算器求值.
利用计算器的计算功能可提高这节课的实效性.在教学中计算器可作为一种探究工具,在这节课中让学生自己动手实验、验证,调动学生学习的积极性,增强数感,利用计算器的计算功能探究用有理数逼近无理数,使学生感受计算器在求无理数近似值的优越性.
[活动5]。
用计算器求实数的值.
例1:计算.
(1)。
(结果保留3个有效数字);。
(2)。
(精确到0.01);。
例2:比较下列各组数的大小.
(1)4,;。
(2)-2,-。
当数的范围由有理数扩充到实数以后,对于实数的运算,教师强调两点:一是有理数的运算率和运算性质在实数范围内仍然成立;二是涉及无理数的计算,利用计算器求其近似值,转化为有理数进行计算.
教师布置练习后,巡视辅导,并通过投影展示同学的计算过程。
活动5中,教师应关注:。
(1)学生是否会正确使用计算器计算实数;。
(2)是否按所要求的精确度正确地用相应的近似有限小数来代替无理数.安排例1的目的是想通过具体例子说明,有理数的运算律和运算性质同样适合于实数的运算,同时巩固使用计算器求实数的方法.
例2是比较数的大小,教学中可以引导学生运用多种方法,比如可以先求出无理数的近似值,把无理数化成有理数,再比较两个有理数的大小等.
活动5使学生能够熟练运用计算器求实数的值.使学生加深对实数的认识.
[活动6]。
小结归纳,课后作业.
问题:。
1、本节课你学到了什么知识?你有什么收获?
2、本节课如何发挥计算器的功能帮助你进行数学探究的?
课后作业:。
(1)课本第22页习题5.3之复习巩固1,2,4;。
(2)第23页课本习题之综合运用8.如图。
教师提出问题.
学生独立回答,教师根据学生的回答,结合结构图总结本节知识.
活动7中,教师应关注(1)学生对无理数和实。
数概念的理解程度;。
(2)学生是否能够认真地倾听与思考;。
(3)学生是否能够发现其中的数学题,并有意识地运用所学知识解决;。
(4)学生能够对知识的归纳、梳理和总结的能力的提高;。
(5)学生能否在本节知识的基础上主动思考,类比有理数的性质和运算来学习实数;。
(6)学生能否学会用计算器进行计算、探究解决数学问题.通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.
学生通过独立思考,完成课后作业,教师能够及时发现问题并反馈学生的学习情况,以便于查漏补缺,优化课堂教学.
教学设计说明。
(1)本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识.同时在本节课中充分发挥计算器的计算、验证、探究功能。因此本节的作用十分重要.
在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。
(2)在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计-例题选择-课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。
(3)计算器在本节课的教学中,起到了重要作用,体现在三个活动过程:第一个过程是利用计算器探求有理数的规律,从而引出无理数的概念;第二个过程是利用计算器估算无理数的近似值;第三个过程用计算器计算实数的值.发挥了计算器的计算功能和探究功能。
(4)本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。
(5)教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。
优秀新北师大版高一数学教案(模板13篇)篇三
教学目标:
1、通过直观操作等活动,使学生理解面积的意义,认识面积单位,建立面积单位的正确表象。
2、经历用不同方式比较图形面积的过程,体会建立统一面积单位的重要性,经历面积单位产生过程。
3、在动手操作,合作交流过程中,提高交流,实践能力。
教学重点:
认识面积和面积单位。
教学难点:
理解面积的意义,建立面积单位的正确表象。
教学准备:
学具盒、课件。
教学过程:
一、引入。
2、全班交流。
3、提示课题:你知道,刚才同学们提到的#平方米是指房间的什么?今天这节课咱们就来探讨有关面积的知识。(板书:面积)。
二、感知体验,建立概念。
1、认识物体表面的大小。
(1)在我们身边的每个物体都有面,有的面大一些,有的面小一些。
(3)看一看看一看黑板的面,课桌的面相比,怎样?
(4)想一想生活中的物体,你还能比一比哪些面的大小?
(5)归纳:刚才我们通过摸一摸、看一看知道了物体的表面有大有小,物体表面的大小叫做它们的面积。(板书:物体的表面)我们把书表面的大小叫做书面的面积,把黑板面的大小叫做黑板面的面积。
2、认识封闭图形的大小。
(1)出示。
(2)归纳:看来只有象a、b、c这样封闭的图形才能判断它的大小。封闭图形的大小,也就是它们的面积。(板书:封闭的图形)。
3、归纳面积的意义。
谁能说一说什么叫做面积?完整板书,齐读。
三、操作探究,认识单位。
1、比较面积的大小。
请同学们从学具里取出三个图形,这三个图形的面积谁大谁小呢?下面请同桌合作,一起来想办法比较一下。
优秀新北师大版高一数学教案(模板13篇)篇四
两位数的乘法。
1、通过问题解决,使学生感知两位数的计算与实际生活的联系,感知数学就在生活中。
2、能独立思考、探索两位数的计算方法,体验算法多样化,并能交流计算(含估算)过程。。
3、能运用两位数乘两位数的计算方法,解决一些简单的实际生活中的数学问题。
重点:理解掌握两位数乘两位数的计算方法,并能解决一些简单的实际问题。
难点:
1、能结合具体情境,正确进行估算,为计算结果指出某个取值范围。
2、理解掌握两位数乘两位数的算理和算法。
1、充分利用和发挥教材主题图的引导作用,让学生在具体生动的生活情境中学习数学。
2、充分利用已学知识的迁移作用,沟通新旧知识间的内在联系,形成基本的计算能力。
优秀新北师大版高一数学教案(模板13篇)篇五
3.培养学生的观察、归纳与概括的能力.
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义――代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“”号排列出来.
解:在数轴上画出表示-a、-b的点:
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
优秀新北师大版高一数学教案(模板13篇)篇六
1.师:你们背的真棒,老师想考考你,敢接受考验吗?听要求,读算式,说口诀(7x8=,8x7=,567=,568=)。
你们的小脑瓜转的可真快,看这两个式子,你能总结出什么?是不是每一句口诀都有四个对应的算式?(不是)。
真是个善于归纳总结的好孩子,请同学们打开教材75页,快速完成第一题目。
汇报!谁来汇报一下你的结果,和他一样的举手。真厉害!
2.下面老师要考考大家的口算能力,注意仔细看卡片,抢答,注意站姿。要求,直接说答案。(答错的起立读算式,说口诀)。
4.教材75页第3题还有更多的问题需要我们来解决,你愿意试试吗?(做好的同学尝试说说这几道题的数量关系。指名汇报。)。
6.好啦,请同学们看大屏幕,这是谁?他是哪里的人物?其实乘法口诀运用非常广,不仅能解决生活中的问题,在中国的四大名著之一西游记中也存在,比如说:孙悟空打白骨精不管三七二十一。用到了什么口诀?孙悟空被太上老君关在八卦炉里炼成火眼金睛,一共关了七七四十九天,用到了什么口诀?唐曾师徒四人西天取经要经历九九八十一难,用到了什么口诀?你看口诀是不是无处不在啊,所以我们一定要学好口诀。
优秀新北师大版高一数学教案(模板13篇)篇七
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:概括倒数的意义与求法。
教学难点:理解“互为”、“倒数”的含义。
教学方法:创设情境、激趣质疑、自主探究、合作学习。
教学过程:
一、比赛引入。
8/11×11/81/10×10。
7/9×9/77×1/7。
(师巡视学生的情况,并对分数的格式加以指导)。
学生思考后,汇报结果:
生1:两个乘数的分子、分母位置颠倒。
生2:每个算式乘积是1。
师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?生:
2可以写成2/1,分子分母颠倒后,2/1×1/2=1。
二、理解倒数的意义。
师:观察的真仔细,我们能不能给这样的数取个名字呀?
生:倒数。
师:对,这就是我们今天要研究的课题:倒数(板书)。
师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数。
师:看这几个算式,倒数是对几个数来说的?
生:两个数(师板书)。
师:这两个数的乘积有什么特点?
生:乘积是1(师板书)。
师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)。
师:怎么理解“互为”呢?
生:相互的意思。
生:就是对两个数而言的`。
师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。
生:。。。。。。
师:大家表现真好,老师也来说一个,3/5是倒数,对吗?
生:不对。
师:你帮老师改正吧。
生1:应该说3/5是5/3的倒数。
生2:。。。。。。
三、观察比较,抽象概念。
1、以小组为单位,学生主动探究这四组数的特点。
生:分子分母倒过来了。
师:那么我们就给这样的数取个名字吧!(板书课题―。
―倒数)师:继续观察这几组数,看看还有什么特点?
生:每组中两个数的乘积都为1。
(如学生不能找出这个特点,则可以引导学生做计算比赛。)。
2、请学生再举一些这样的例子进行观察。
3、概括“倒数”的意义,板书。(强调“两个数”――“互为”;“乘积为1”――“倒数”。)。
四、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)。
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
(师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。)。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。
五、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)。
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?(先把带分数化成假分数,再求它的倒数。)。
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
六、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
2、判断。
(1)2/9是倒数。()。
(2)一个数的倒数一定比原来小。()。
(3)所有的数都有倒数。()。
(4)a是整数,所以a的倒数是1/a。()。
(5)因为0.2×5=1,所以0.2和5互为倒数。()。
七、全课小结。
优秀新北师大版高一数学教案(模板13篇)篇八
可翻书回顾所学的分数的知识,并和同桌说一说。
1、学生独立完成后,当“小老师”检查同桌作业并交流做法,评价作业。
练习课。
初步理解分数的意义。
二、师生互动,探究新知。
独立完成后,全班交流,订正答案。
四、合作交流,取长补短。
1.小组讨论:我的成长足迹。
(1)我解决了一个生活中的问题……。
(2)我读了一本有趣的数学读物……。
(3)我学会了有条理地思考问题……。
2.分组交流,然后全班交流。
小组总结汇报,师总结板书。
生独立思考,自由说:
学过平方厘米,平方分米、平方米、公顷、平方千米等。
平方厘米可用来测量橡皮、书本等的面积……米可用来测量教室的面积、黑板的面积等……。
学生讨论,小结:图形必须是封闭的。
独立做提。(可以拿出面积单位比一比,再思考。又组长主持讨论、评估、反思)。
生独立看图。
小组合作学生可能提:
(1)房间面积?
(2)瓷砖面积?
(3)需要多少块砖?
小组汇报,解决问题。
优秀新北师大版高一数学教案(模板13篇)篇九
一、激趣导入。
你玩过七巧板吗?
七巧板是中国唐朝发明的一种非常有趣的游戏,它由一个正方形分割成五个三角形、一个平行四边形和一个正方形,19世纪初流传到西方,引起人们广泛的兴趣,并迅速传播,被称为“东方魔板”。下面是一年时你们用七巧板拼出的图形。
优秀新北师大版高一数学教案(模板13篇)篇十
学生在练习本上列式计算。
2.说一说哪个图形的面积大,哪个图形的面积小。
1、说一说每种颜色图形的面积是多少。
3、小组长取出信封里的纸片,这些纸片是干什么的?
5、互相说一说测量的结果,由小组长把这些结果记录下来。
d读作:平方分米。
读作:平方米。
公顷。
平方千米。
优秀新北师大版高一数学教案(模板13篇)篇十一
1.师生谈话由学生最近看过什么电影,在哪个电影院看的,电影院每排有多少个座位,有多少排,引出电影院座位问题。
请几个同学介绍。
师:谁仔细观察过,你去的电影院每排大约有多少个座位?有多少排?
生发言,教师对注意观察电影院座位的学生给予表扬。
师:-同学真不错,到电影院不光是看电影,还特别注意观察电影院的座位情况。今天我们就来解决一个电影院的座位问题。
用小黑板出示问题(1)。
2.用小黑板出示问题(1),让学生读题,了解其中的信息和要解决的问题。
师:请同学们认真读题,说说从中你了解到哪些数学信息?要解决的问题是什么?
学生说电影院原来的座位情况和问题。
二、解决问题。
1.提出问题(1),师生共同列出算式,鼓励学生自主计算。
师:求原来一共有多少个座位,怎样列式呢?
学生说,教师板书:36×30=。
师:36×30,这个算式你们都会计算,用自己的方法试着算一算吧!
学生自主计算,教师巡视,了解学生的计算方法。
2.交流学生个性化的计算方法,鼓励学生大胆介绍自己的想法和计算过程。
师:谁来说一说你是怎么想的?怎么计算的?
学生可能会有以下方法。
(1)先算10排共有多少个座位。
36×10=360(个)。
360×3=1080(个)。
(2)把30看成3个十,36乘3个十等于108个十,也就是1080。所以,36×3=1080(个)。
(3)用竖式计算。
第(2)种方法如果没有出现,教师可以交流,并接着列出竖式的简便算法。
如果出现,教师就结合学生的算法介绍简便算法。
3.介绍竖式计算的简便算法。
师:36乘30,可以把30看成3个十,这样写竖式。
边说边板书。
师:计算时,先算36乘3,得108,也就是108个十,在108的前面添上一个0。
边说边完成板书。
生:这样写很简便。
用小黑板出示问题(2)。
4.教师谈话,并说明要解决的问题。然后,用小黑板出示问题(2),让学生列出算式,用口算,说一说是怎样想的。
师:谁来说一说现在这个电影院的座位情况?
生:这个电影院现在每排有40个座位,还是有30排。
师:谁来说一说怎么列式?
生:40×30。
师:口算结果是多少?
学生可能会直接说出结果1200。
师:说一说你是怎样想的。
学生可能回答。
把40看成4个十,4个十乘30等于120个十,就是1200。
先算4乘3等于12,再在12的后面添两个0,就是1200。
教师重点指导口算方法。
5.教师介绍竖式计算,边说边写出竖式。
师:整十数乘整十数,可以直接利用口诀计算。先把整十数十位上的数相乘,再在积的后面添两个0。用竖式可以这样算。
教师介绍竖式的简便算法。
三、尝试练习。
1.教师在黑板上写。
出试一试中的6道题,让学生独立计算,然后进行交流。
师:同学们刚才用不同的方法解决了电影院的座位问题,而且学会了用竖式计算乘数末尾有0的乘法。现在,请同学们计算一下黑板上的几道题,看谁算得又快又正确。
学生自主计算,请两个人到黑板上板演。64×30和99×99。
10×10不要求有竖式。
全班交流。
2.提出议一议的问题,启发学生根据三道题的.乘数和积回答问题。
师:观察这几道题中乘数和积,想一想,两位数乘两位数,积最多是几位数,最少是几位数?说一说你判断的理由。
学生可能回答。
两位数乘两位数,积最多是四位数。因为99是的两位数,99×99=9801,所以两位数乘两位,积最多是四位数。
两位数乘两位数,积最小是三位数。因为10是最小的两位数,10×10=100,100是个三位数。所以,两位数乘两位数的积最小是三位数。
学生如果有困难,教师启发或参与交流。
四、课堂巩固。
1.练一练第1题。
(1)师生一起估计积是几位数。要给学生充分地表达不同想法的机会。
师:看来同学们不但学会了两位数乘两位数的计算方法,又知道积最多是几位数,最少是几位数。下面看练一练第1题,我们一起估计一下积是几位数。说一说你是怎样想的。
学生可能会出现不同说法。
如
26×40可能出现两种意见。
积最多是三位数,因为十位上的两个数2乘4等于8,不进位;。
积最多是四位数。把26看成25,40看成4个十,25乘4个十等于100个十,就是1000,所以积一定是四位数。
要给学生充分的讨论时间。
74×36,也可以有两种算法。
因为十位上的两个数7乘3等于21,要进位,所以积一定是四位数;。
因为70×30=2100,所以,70×36的积一定是比2100大的四位数。
(2)鼓励学生自己计算,检验估算的结果。
使学生了解判断积是几位数的一般方法:先看两位数十位上的数,十位上的两个数相乘超过或等于10,积一定是四位数。
师:好!现在请同学们自己计算一下,看看估计的结果对不对。
学生计算后,再总结估计积是几位数的方法:两位数乘两位数,十位上的两个数相乘进位,积一定是四位数。
2.练一练第2题,口算比赛。
师:这节课同学们表现得都非常棒,下面我们举行一个口算竞赛,看谁是咱们班的“口算能手”!
3.练一练第3题,先读题明确图意后,让学生独立解答,再交流解答问题的过程和结果。
学生回答后,自己列式计算,然后交流。
4.练一练第4题让学生先读题,弄懂题意,再计算。交流时,重点说一说是怎样判断的。
五、课堂小结。
同学们我们这节课学习了什么?你有什么收获?
优秀新北师大版高一数学教案(模板13篇)篇十二
教学目标:
2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积计算公式的推导过程。
教学方法:
创设情境——新知讲授——巩固总结——练习提高。
教学用具:
多媒体课件、三角形学具。
教学过程:
一、创设情境。
师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)。
师:同学们,红领巾是什么形状的?
生:三角形的。
师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。
板书:三角形的面积。
二、新知探究。
1、课件出示一个平行四边形。
师:平行四边形的面积怎么计算?
生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)。
师:平行四边形的面积公式是怎样得到的?
生说推导过程。
生1:我想把它转化成已学过的图形。
生2:我想看看三角形能不能转化成长方形或平行和四边形。
2、动手实验。
师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。
生小组合作,教师巡视指导。
3、展示成果,推导公式。
优秀新北师大版高一数学教案(模板13篇)篇十三
教学目标:
1、通过天平游戏活动,让学生发现等式两边都加上(或减去)同一个数,等式仍然成立。
2、让学生能利用发现等式的性质,解简单的方程。
3、通过操作、推理等活动,发展学生的数学思维。
教学重难点:
通过天平游戏,帮助学生理解等式的性质,等式两边加(或减去)同一个数,等一式仍然成立。
教具、学具:
天平。
教学过程:
一、创设情景,导入新课。
老师课前给每个组准备了一个天平。你了解天平吗?怎么才能使天平保持平衡?(左右托盘中放入同样重的物品。)。
今天我们要利用天平来做游戏,通过游戏同学们将会发现一些非常有趣的东西。
【设计意图:以学生的经验基础出发,引导学生的兴趣和思维进入到课堂学习中。】。
二、创设情境,建立模型。
2、再在天平的左侧再放2克砝码,你们发现了什么?如何才能使天平恢复平衡?(右侧也放入2克的砝码或物品。)。
怎样用算式表示?(5+2=5+2)。
3、左侧的砝码重x克,右侧放10克砝码,这时天平的指针在中间,说明什么?你知道左侧的砝码重多少克?你能写出一个等式吗?(x=10)。
4、如果左侧再加上一个5克的砝码,右侧也加上一个5克的砝码,这时天平的指针在中间,说明什么?你能写出一个等式吗?(x+5=10+5)。
5、通过上面的游戏你发现了什么?
先小组交流,再全班交流:天平的左右两边加上同样中的物品,天平仍然保持平衡。
6、你们再推想一下如果天平都减去相同质量,天平会怎样。先看书,再动手验证你的想法。
7、通过刚才两组游戏,如果我们把天平作为一个等式的话,你发现什么数学规律?小组交流。(通过天平游戏,发现等式两边都加上(或都减去)同一个数,等式仍然成立)。
345-()=345-()。
三、解释运用。
(1)你知道这道题中的未知数x等于多少吗?说一说你的想法。
x+8=10。
x+8-8=10-8方程两边都减去8。
x=2。
(注意书写格式,等号要对齐。)。
(2)x=2对不对呢?你有什么来证明一下吗?
2、试一试:求未知数x。
独立完成,全班反馈,交流。
3、全课小结。
通过今天的游戏,你有什么收获?