教学计划是教师根据学科特点和学生需求,合理安排教学内容和教学过程的一种策划。这些教学计划范文涵盖了不同学科和不同年级的教学内容,具有很高的参考价值。
工程问题教学设计大全(20篇)篇一
1、使学生认识工程问题的特点,理解工程问题的数量关系,掌握解题方法。
2、会正确解答一般的工程问题,培养学生分析、解答应用题的能力。
3、加强数学和学生生活实际的联系,使学生感知数学就在身边,对数学产生亲切感。
教学重点:使学生掌握工程问题的特点和解题方法。
教学难点:工作总量是用单位“1”表示以及求工作效率所表示的含义。
教学过程。
一、创设情境,激发兴趣。
谈话:我们现在合校已经五年了多了,为了使同学们能够健康的成长和学校的发展,学校领导决定修一条高档次的一级塑胶直行跑道。大家高不高兴?今天我们来研究修跑道的问题。
师:他们都承诺能保质保量完成任务,但甲工程队单独完成需4天,乙工程队单独完成需6天,(板书:修一段跑道,甲队单独修需4天,乙队单独修需6天,)。
二、探究交流,学习新知。
1、猜想。
师:同学们可以猜想一下,两个工程队共同加工需要的天数大概会是多少天?
2、验证。
师:现在就请同学们以小组为单位帮忙算一算需要几天能完成。想办法验证一下,自己的猜想是不是正确?(板书:两队合修需几天完成任务?)。
师:题目里没有具体的工作总量,怎么办?
生:我们可以假设这条直行跑道的实际长度,如24米,60米……。
师:可以,你们认为假设这条路的长度为多少米比较好?为什么?
生:4和6的最小公倍数比较好,计算方便。
师;下面我们分小组计算验证。
课件出示:
一队每天修多少千米:________________________。
二队每天修多少千米:________________________。
两队合修,每天修多少千米:________________________。
两队合修,需要多少天?________________________。
指2名学生板演,并说出算式中每一步表示的意思。
通过以上的列式计算,你们有什么疑问?
改变了工作总量,为什么合修的天数还是2.4天?
3、释疑:
(1)讨论释疑。师:这个问题提的好,有价值。
学生讨论,小组汇报。
4、尝试:。
既然合作的工作时间与工作总量的具体数值没有关系,可以假设这条道路的长度为单位“1”,学生尝试解答:指名板演。
5、小结:
像这样把工作总量看作单位"1",而工作效率则用"单位时间完成的工作总量的几分之一"来表示,就是我们今天研究的工程问题.(板书课题:工程问题)。
6、提炼思想。
怎样才知道以上的解决方法是正确的?把你的想法写下来,和同学交流一下。
学生汇报,教师板书:根据工作总量=工作效率×工作时间,可以验算答案是否正确。(1/4+1/6)×12/5=1,因为我们假设工作总量为单位“1”,所以答案正确。
师:不管假设这条道路有多长,答案都是相同的,把道路长度看成单位“1”,更简便。
师:同学们,同桌互相讨论一下,这两种解答方法有什么相同点和不同点?
师:谁能说说工程问题的特点是什么?
生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。
师:像这种把工作总量看作单位“1”,而工作效率则用"单位时间完成的工作总量的几分之一"来表示,这种思想就是数学上“建模思想”,如行程问题等也可以用这种思想来解决。
四、联系生活,实际应用。
1、完成教材第43页的“做一做”。
2、完成教材练习九第45页第7题。
五、归纳总结,促进发展。
通过这节课的探索,你有什么收获?
工程问题教学设计大全(20篇)篇二
工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。
教学重点是:掌握工程问题的数量关系和解答方法。
难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。
二、说教法。
现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。
三、说学法。
教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。
四、说教学过程。
根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。
第一环节是复习铺垫。
由于用分数解工程问题与整数解工程问题的`思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修()。今天完成了工作的()还剩()。(2)如果这项工程每天完成,()天完成。巩固了旧知,为学习新知作好铺垫。
第二环节是学习新知识,分三步进行。
第一步:加深对整数解工程问题的数量关系的理解。
引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。
第二步:探究用分数解工程问题。
这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。
第三步,比较分数解和整数解工程问题,加深印象。
比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。
第四环节是练习、巩固。
练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。
文档为doc格式。
工程问题教学设计大全(20篇)篇三
教学内容:
教科书第112页到第113页例1。
教学目标:
1、初步掌握优化思想。
2、能够用优化思想解决生活中的问题。
3、感受数学的魅力。
教学重点及难点:
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼烙法。
学具准备:圆形纸片、多媒体课件。
教学过程:
一、引入。
师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)。
师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!
二、新授。
生:6分钟。
师:为什么?
生:因为一张饼一面是3分钟,两面就是6分钟。
生:(提出疑问)不对,应该是6分钟。
师:为什么是6分钟呢?
生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。
师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)。
2、突破难点。
师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?
生:先烙两张,再烙一张,一共需要12分钟。
师:你们都的这样烙的吗?那还有没有更好的方法呢?
(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。
小组汇报:
师:谁想上来给大家汇报一下你们组讨论的结果。
生:汇报讨论结果。
师在表格内板书。
123。
第一次正正。
第二次反正。
第三次反反。
师:谁听明白了?
(生再讲一遍)。
此时教师用纸片往黑板上贴每次的情况。
师:大家觉得这种方法怎么样?
生:比上种方法节约时间,比较快。
师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)。
师:那这样才能不浪费时间呢?
生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)。
师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。
三、拓展提高。
师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。
(生小组研究)。
生:把4看成2+2把6看成2+2。
(及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知识来解决)。
聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?
生:双数。
你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?
生:可以用烙两张饼的方法,两张两张的烙。
板书:双数张饼:两张两张的烙。
师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。
把5张饼烙两张,再把那3张按刚才的好办法烙。
把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:谁能概括的说一说你发现的规律。
生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。
师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。
四、师生交流,思维升华。
师:通过这节课的学习,你知道了什么?
师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学。
工程问题教学设计大全(20篇)篇四
教学内容:
第十一册79页例9(第一教时)。
教学目的:
1.使学生认识工程问题的结构特点,掌握它的数量关系、解题思路和解题方法,并能正确地解答工程问题的基本题。
2.培养学生解题的迁移能力,以及数学思维能力。
教学准备:
投影片若干张。
教学过程:
一、导入:
今天,老师让每位同学当公司经理,看哪位经理最精明。
出示:假如你是某工程队的经理,要修一段路,现有甲、乙两个工程队,甲队单独修10天完成,乙队单独修15天完成。你想承包给哪个队?为什么?(学生分组讨论,派代表发言)。
生1:给甲队做,因为他完工时间比乙队少,……。
师:仅考虑时间少行吗?
生2:给乙队做,虽然他时间较长,可能修路质量好,……。
师:有没有更好的方案呢?
生3:由甲乙两队合做,完工时间更短,可让两队优势互补,……。
师:若甲乙两队合做,猜猜看,大约需要几天完工?
生1:小于10天,但大于5天。
生2:6天,可假设一段路长120千米,……。
师:我们不妨计算一下,具体是几天?
二、教学例9。
学生汇报计算的方法:30÷(30÷10+30÷15)=6(天)(板书)。
生:60÷(60÷10+60÷15)=6(天)(板书)。
师:仔细比较这两道题,你发现了什么?
生1:合做时间都是6天。
生2:无论公路长多少,只要各自单独做的时间不变,合做时间不变。
师:为什么会这样呢?
生1:工作总量扩大了,工作效率也在扩大,而且扩大的倍数相同,所以时间不变……。
生2:无论公路长多少,甲乙两队每天修的各自占总长的几分之几没变,……。
生:把这段公路看成单位“1”。
师:甲乙的工作效率又如何表示呢?
生:1/10,1/15。
师:同学们算一算,合做时间是几天呢?
学生列出算式:1÷(1/10+1/15)=6(天)(板书)。
2.师:这就是我们今天学习的新知识“工程问题”(板书课题)。
师:你觉得工程问题有哪些特点呢?
生1:把工作总量看成单位“1”……。
生2:工作效率用时间的倒数表示。
三、练习。
1.投影出示:教材第80页练习二十第1题。指名学生回答。
2.导入部分加一个条件,假如现有三个工程队,丙单独修需12天完成,想一想经理安排合做的方式有几种?每种合做方式各需几天?(只列式,不计算)。
(有4种,分别是甲乙合做,甲丙合做,乙丙合做,三队合做)哪种合做方式时间最少呢?请你把他们从时间少到时间多排列一下。(不计算)。
3.如果仅修这段路的一半,那么这几种合做方式各需几天呢?
四、应用。
工程问题的解题方法,在生活中有着广泛的应用。
[本题的意图是学生能运用类比的数学方法解。即看成例9]。
2.你还能想到类似的问题吗?
工程问题教学设计大全(20篇)篇五
教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。
教学过程。
一、创设情境,设疑激趣。
出示小黑板。
1、学生读题。
2、先让学生大胆猜想。
3、然后老师提出:
我们一起来探究这个问题好吗?
二、由浅入深,辅路搭桥。
出示小黑板:
让学生独立完成,然后指名回答,教师板书:
1、60/2=30(本)60/3=20(本)。
2、60/(30+20)=1.2(本)或者:设x分钟发完?
(30+20)x=60。
x=60/50。
x=1.2。
3、60/(60/2+60/3)或者:设两人合发需要x分钟。
x(60/2+60/3)=60。
三、引导探究,挑战问答。
老师质疑:
假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?
1、要求学生分小组合作思考、探究。
2、让各小组组长把解决问题的办法讲出来,老师板书:
a、1/2=1/21/3=1/3。
b、1/(1/2+1/3)或者:设需要x分钟完成。
x(1/2+1/3)=1。
在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:
“你怎么知道这是对的?”
“还有没有别的思路或可能性?”
“列式为1/(2+3)你们认为对吗?为什么?”
四、促进思维,拓展发散。
解决好“分发本子”问题后,我问学生:
你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?
五、反馈练习,以促双基。
1、p95“做一做”
2、练习二十五第1题。
3、指导学生自学例9。
六、总结。
1、今天学习了什么内容?
2、这节课你最大的收获是什么?哪些地方你还不太懂?
家庭作业:
练习二十五第2、3、4题。
工程问题教学设计大全(20篇)篇六
1、使学生认识工程问题的特点,理解工程问题的数量关系,掌握解题方法。
2、会正确解答一般的工程问题,培养学生分析、解答应用题的能力。
3、加强数学和学生生活实际的联系,使学生感知数学就在身边,对数学产生亲切感。
使学生掌握工程问题的特点和解题方法。
工作总量是用单位“1”表示以及求工作效率所表示的含义。
谈话:我们现在合校已经五年了多了,为了使同学们能够健康的成长和学校的发展,学校领导决定修一条高档次的一级塑胶直行跑道。大家高不高兴?今天我们来研究修跑道的问题。
师:他们都承诺能保质保量完成任务,但甲工程队单独完成需4天,乙工程队单独完成需6天,(板书:修一段跑道,甲队单独修需4天,乙队单独修需6天,)。
师:同学们可以猜想一下,两个工程队共同加工需要的天数大概会是多少天?
师:现在就请同学们以小组为单位帮忙算一算需要几天能完成。想办法验证一下,自己的猜想是不是正确?(板书:两队合修需几天完成任务?)。
师:题目里没有具体的工作总量,怎么办?
生:我们可以假设这条直行跑道的实际长度,如24米,60米……。
师:可以,你们认为假设这条路的长度为多少米比较好?为什么?
生:4和6的最小公倍数比较好,计算方便。
师;下面我们分小组计算验证。
课件出示:
一队每天修多少千米:________________________。
二队每天修多少千米:________________________。
两队合修,每天修多少千米:________________________。
两队合修,需要多少天?________________________。
指2名学生板演,并说出算式中每一步表示的意思。
通过以上的列式计算,你们有什么疑问?
改变了工作总量,为什么合修的天数还是2、4天?
(1)讨论释疑。师:这个问题提的好,有价值。
学生讨论,小组汇报。
既然合作的工作时间与工作总量的具体数值没有关系,可以假设这条道路的长度为单位“1”,学生尝试解答:指名板演。
像这样把工作总量看作单位"1",而工作效率则用"单位时间完成的工作总量的几分之一"来表示,就是我们今天研究的工程问题、(板书课题:工程问题)。
怎样才知道以上的解决方法是正确的?把你的想法写下来,和同学交流一下。
学生汇报,教师板书:根据工作总量=工作效率×工作时间,可以验算答案是否正确。(1/4+1/6)×12/5=1,因为我们假设工作总量为单位“1”,所以答案正确。
师:不管假设这条道路有多长,答案都是相同的,把道路长度看成单位“1”,更简便。
师:同学们,同桌互相讨论一下,这两种解答方法有什么相同点和不同点?
师:谁能说说工程问题的特点是什么?
生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。
师:像这种把工作总量看作单位“1”,而工作效率则用"单位时间完成的工作总量的几分之一"来表示,这种思想就是数学上“建模思想”,如行程问题等也可以用这种思想来解决。
1、完成教材第43页的“做一做”。
2、完成教材练习九第45页第7题。
通过这节课的探索,你有什么收获?
工程问题教学设计大全(20篇)篇七
工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。
2、理解、掌握分数工程问题的数量关系,解题思路和方法。
教具、学具准备:投影片几张。
一、复习引入:
口答列式:
1、修一条100米长的跑道,5天修完。平均每天修多少米?
2、一项工程,5天完成,平均每天完成几分之几?
3、修一条100米长的跑道,每天修25米,几天修完?
4、一项工程,每天完成1/8,几天可以完成全工程?
(通过这组题,复习工程问题的三个基本数量关系,以及工作总量、工作效率、不定具体的数量应样表示,为学习用分数解答奠定基础。)。
二、新课:
2、教学例10。
(2)审题后,根据条件问题列成下表,分析解答,讲算理:
工作总量。
甲独修完成时间。
乙独修完成时间。
两队合修完成时间。
30天。
10天。
15天。
3、改变例10中的工作总量,让学生猜一猜,算一算,两队合修几天可以完成?接上表在工作总量栏中写出:60千米、90千米。
(1)让学生猜完后,计算:
(2)订正后问:为什么总千米数不同,而两队合修的天数都一样?
(通过工作总量的改变,让学生猜猜、算算合修的天数,激发学生学习工程问题的兴趣,引起思考,让学生带着强烈的好奇心投入到新课的学习中。)。
4、如果去掉“长30千米”这个条件,改为“修一段公路”,还能不能解答?
(1)组织学生讨论:。
(2)列式解答、讲算理、
(3)比较与归纳:。
再讨论:
1)这题与上面的练习题材有什么相同和不同的地方?
2)两题的解题思路是否相同呢?
3)用分数解答工程问题的解题特点是什么?
4)指出例10这样的题目可用两种方法解答。
(通过学习讨论,引导学生认识分数工程问题的特征,掌握了用分数解答工程问题的方法。)。
三、练习:
1、第98页做一做。(通过基本练习,让学生及时掌握、巩固工程问题的解法。)。
2、第99页。
3、判断题。
(通过辨析、使学生进一步明确解答工程问题,工程总量和工作效率必须要相对应。加深学生对工程民问题应用题的特征的理解,牢固掌握解题方法。)。
工程问题教学设计大全(20篇)篇八
教学内容:。
小学数学第十一册第98页例10。
教材简析:。
工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。
教学目标:
1、认识分数工程问题的特点。
2、理解、掌握分数工程问题的数量关系,解题思路和方法。
3、能正确解答分数工程问题。
教具、学具准备:投影片几张。
过程设计:
一、复习引入:
口答列式:
1、修一条100米长的跑道,5天修完。平均每天修多少米?
2、一项工程,5天完成,平均每天完成几分之几?
3、修一条100米长的跑道,每天修25米,几天修完?
4、一项工程,每天完成1/8,几天可以完成全工程?
(通过这组题,复习工程问题的三个基本数量关系,以及工作总量、工作效率、不定具体的数量应样表示,为学习用分数解答奠定基础。)。
二、新课:
1、引出课题:工程问题应用题、
2、教学例10。
(2)审题后,根据条件问题列成下表,分析解答,讲算理:
工作总量。
甲独修完成时间。
乙独修完成时间。
两队合修完成时间。
30天。
10天。
15天。
3、改变例10中的工作总量,让学生猜一猜,算一算,两队合修几天可以完成?接上表在工作总量栏中写出:60千米、90千米。
(1)让学生猜完后,计算:
(2)订正后问:为什么总千米数不同,而两队合修的天数都一样?
(通过工作总量的改变,让学生猜猜、算算合修的天数,激发学生学习工程问题的兴趣,引起思考,让学生带着强烈的好奇心投入到新课的学习中。)。
4、如果去掉“长30千米”这个条件,改为“修一段公路”,还能不能解答?
(1)组织学生讨论:。
(2)列式解答、讲算理、
(3)比较与归纳:。
再讨论:
1)这题与上面的练习题材有什么相同和不同的地方?
2)两题的解题思路是否相同呢?
3)用分数解答工程问题的解题特点是什么?
4)指出例10这样的题目可用两种方法解答。
(通过学习讨论,引导学生认识分数工程问题的特征,掌握了用分数解答工程问题的方法。)。
三、练习:
1、第98页做一做。(通过基本练习,让学生及时掌握、巩固工程问题的解法。)。
2、第99页。
3、判断题。
(通过辨析、使学生进一步明确解答工程问题,工程总量和工作效率必须要相对应。加深学生对工程民问题应用题的特征的理解,牢固掌握解题方法。)。
工程问题教学设计大全(20篇)篇九
教学内容:人教版第九册第四单元p95例9。
教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。
教学过程。
一、创设情境,设疑激趣。
出示小黑板。
1、学生读题。
2、先让学生大胆猜想。
3、然后老师提出:
我们一起来探究这个问题好吗?
二、由浅入深,辅路搭桥。
出示小黑板:
让学生独立完成,然后指名回答,教师板书:
1、60/2=30(本)60/3=20(本)。
2、60/(30+20)=1.2(本)或者:设x分钟发完?
(30+20)x=60。
x=60/50。
x=1.2。
3、60/(60/2+60/3)或者:设两人合发需要x分钟。
x*(60/2+60/3)=60。
三、引导探究,挑战问答。
老师质疑:
假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?
1、要求学生分小组合作思考、探究。
2、让各小组组长把解决问题的办法讲出来,老师板书:
a、1/2=1/21/3=1/3。
b、1/(1/2+1/3)或者:设需要x分钟完成。
x*(1/2+1/3)=1。
在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:
“你怎么知道这是对的.?”
“还有没有别的思路或可能性?”
“列式为1/(2+3)你们认为对吗?为什么?”
四、促进思维,拓展发散。
解决好“分发本子”问题后,我问学生:
你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?
五、反馈练习,以促双基。
1、p95“做一做”
2、练习二十五第1题。
3、指导学生自学例9。
六、总结。
1、今天学习了什么内容?
2、这节课你最大的收获是什么?哪些地方你还不太懂?
家庭作业:
练习二十五第2、3、4题。
工程问题教学设计大全(20篇)篇十
答:
8除4/5=10(km/)。
4/5除8=0.1(kg)。
5、一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?
答:
30÷1/2=60千米。
1÷60=1/60小时。
6、电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
答:
原价是。
200÷2/11=2200元。
现价是。
2200-200=元。
7、一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?
答:
4/5*5/8=(4*5)/(5*8)=1/2(米)。
4/5-1/2=8/10-5/10=3/10(米)。
答:
第一天卖出水果总重量的3/5,则,第二天卖了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5。
3/5-2/5=1/5。
30÷1/5=150千克。
工程问题教学设计大全(20篇)篇十一
一、教学内容。
课标版小学数学第八册第四单元的例1、例2、例3及“做一做”。
二、教学目标。
(1)借助实物和直观图,使学生理解和掌握小数的性质,会应用小数的性质把一个小数化简和把一个数改写成指定位数的小数。
(2)通过小数性质的概括,培养学生的抽象、概括能力。通过应用小数性质,培养学生应用所学知识,解决实际问题的能力。
(3)通过理解小数的性质,渗透“变”与“不变”的辩证思想。
三、教学重点。
小数性质的推导和理解,真正掌握并正确运用这一性质解决相关问题。
四、教学难点。
掌握在小数部分什么位置添“0”去“0”,小数大小不变。
五、教具准备.三条米尺、题卡。
六、教学过程。
1、情景导入,激趣揭题。
同学们,你们喜欢听故事吗?今天老师给大家讲一个《西游记》唐僧师徒一起去西天取经的故事。有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)。
工程问题教学设计大全(20篇)篇十二
苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:()个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
工程问题教学设计大全(20篇)篇十三
教学内容:
教学来源:
人教版小学数学教材第九册第七单元《植树问题》。
五年级学生。
备课人:
张金玲。
基于标准:
数学广角的教学目标可概括为以下几点:
1、感悟重要的数学思想方法;。
2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。
3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。
教材分析:
《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
学习目标:
1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。
2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。
评价任务:
任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。
任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。
【学习重点】:发现棵数与间隔数的关系。
【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。
【教学准备】:课件、小组学习单。
【教学过程】:
一、导入新课。
1、猜谜语,直观认识间隔。
新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。
同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。
哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。
手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。
我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。
你发现什么了吗?(生说)。
的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。
二、探究规律实现目标。
1、例题探究。
说起植树问题我们就先从植树谈起吧。请看例题。
a、从题中你能知道哪些信息?谁来说一说?生说,师画。
师小结:
一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
b、算一算,一共要栽多少棵树?反馈答案:
方法1:1000÷5=200(棵)。
方法2:1000÷5=200200+2=22(棵)。
方法3:1000÷5=200200+1=21(棵)。
疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。
三、自主探究,发现规律。
1、化繁为简探规律。
是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。
是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。
工程问题教学设计大全(20篇)篇十四
教学目标:
知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。
过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。
情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。
教学重点:学会解决含有两个未知数的问题。
教学难点:分析数量关系。
教学准备:多媒体课件。
教学模式:多媒体教学。
教学过程:
一.准备题。
1.想一想,填一填。
(1).学校科技组有女同学人,男同学人数是女同学的3倍。
男同学有人;
男女同学共有()人;
男同学比女同学多()人。
(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。
松树栽了()棵;
柳树比松树少栽()棵。
2.解下面的方程。
二.引入新课。
多媒体出示图片:破坏生态环境的后果,引发学生感想。
出示植树造林图片,感受大自然的美。
三.探究新知。
1.观察主题图。
你从中知道了哪些信息?说说看。(师板书条件)。
想一想:可以提出什么数学问题?(师补充板书)。
2.引导学生分析问题,解决问题。
(1).学生自由读题,理解题意。
(2).引导学生画线段图,分析数量关系。
种树面积:
种草面积:共12.5亩。
提问:题中有两个未知数,怎么办?怎样设未知数?
启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。
1.5亩。
教师:借助线段图,会解决这个问题吗?试试看。
(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。
3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。
四.巩固练习。
同学们知道地球的形状吗?
1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。
2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。
五.深化练习。
1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。
让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。
2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。
2.数学小博士。
六.全课总结。
引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。
七.布置作业。
教后反思:
一、教材的处理。
数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。
二、本节课目标完成情况。
在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。
三、课件的应用。
解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。
四、教学中的不足。
1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。
2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。
3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。
总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。
工程问题教学设计大全(20篇)篇十五
相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。
设计思想:
(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。
(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。
理念:
(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。
(1)知识与技能:
了解相遇问题的应用题的基本结构,掌握解题方法。
(2)过程与方法:
经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。
(3)情感态度与价值观:
a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。
b:培养学生在生活中提出数学问题的意识。
重点:了解相遇问题的应用题的基本结构,掌握解题方法。
难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。
(一)创设情境
1、复习旧知,引发联想
画面演示,画外音叙述:
这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?
这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?
请学生谈谈对这两道题的想法。
2、学生表演,理解概念
刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。
屏幕上依次闪动出现:相对、同时、相遇、相距
(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。
(2)老师叙述,学生表演。
两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。
提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。
(二)尝试探索
1、出示例题
2、提出问题
看到例题,你会想到什么问题?
师生对问题进行筛选,重点解决下面几个问题:
(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?
(2)4分钟的时候会出现什么情况?
(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)
3、列式讨论
(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。
主要有两种思路:
第一种:65×4+70×4
第二种:(65+70)×4
4、认识速度和
5、质疑
“对这道题还有什么不同的想法或问题吗”
(三)巩固发展
1、基本练习
2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。
3、游戏
再请两位同学表演,并提问两人相对而行可能出现什么情况?
(1)两人相遇;
(2)行走一段未相遇;
(3)相遇后继续行走。
给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。
教师一边叙述,一边出示5分钟时间的牌子。
工程问题教学设计大全(20篇)篇十六
1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的关系。
2、让学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3、让学生会用自己的语言表达解决问题的大致过程和结果。
4、让学生在活动中获得积极的体验,感受数学与生活的联系。
经历转化过程,初步学会用转化的方法来解决简单的实际问题。
让学生学会用转化的方法来解决简单的实际问题,会用自己的语言表达解决问题的大致过程和结果。
教具:课件、小棒若干根。
学具:每人小棒若干根,同桌两人一张练习纸、一支水彩笔。
设计理念:遵循《数学课程标准》的要求,从学生的认知水平和已有的知识经验出发,给学生提供愉快的学习环境,让学生通过学生动手操作、自主探索、思考交流,积极参与数学活动,在生动的教学情境中自主收集信息,提出问题,解决问题。教学中注重学生的情感体验,关注学生的学习过程,让学生在活动中获得积极的体验,感受数学与生活的联系。
(一)初步感知。
1、引入:小朋友们平时喜欢用小棒摆东西吗?会用小棒摆什么呢?然后教师展示自己摆的小花伞,得出摆一把小花伞用4根小棒。
2、动手:学生动手摆小花伞,指名一位学生在黑板上摆。
3、交流:(1)说说你摆了几把小花伞,用了几根小棒?你是怎么知道的?
(2)观察黑板上:×××用的小棒根数和老师用的小棒根数有什么关系呢?学生说出的关系可能有求和、比多少、还有倍数关系。如果没有倍数关系,可以引导学生:除了小朋友们说的求和、比多少,如果换一种说法,说说我们用的小棒根数的倍数关系,你会吗?得出:×××用的小棒根数是老师的3倍。
(3)你又是怎么知道×××用的小棒根数是老师的3倍的呢?有些学生可能是直接通过观察,有些学生还可能会将求12是4的几倍转化为12里面有几个4,并用除法计算。
(4)12÷4=3表示什么意思?单位怎么写?得出:12是4的3倍,说明倍表示的是两个数之间关系,不是单位名称,所以3后面什么也不用写。
(5)让学生说说自己用的小棒根数是老师的几倍。
4、引出课题:用倍的知识去解决问题。
(二)进一步感知。
1、引入:森林里正在举行动物运动会,一起去看看。
2、出示:跳远比。
松鼠:
袋鼠:
猜一猜:袋鼠跳的长度是松鼠的()倍。
3、出示数据,电脑验证。
1、引导学生收集信息并自主提出问题。
出示:爬行比赛。
蜗牛24只毛毛虫6只;乌龟4只。
学生提的问题能口答的直接口答。(如求和的或者比多少的)。
从学生的回答中摘录:“蜗牛的只数是毛毛虫的几倍?”或“蜗牛的只数是乌龟的几倍?”
3、比较两个问题,说说你有什么发现?
引入:闯关比赛。
1、第一关:估一估。
估一估,左边公鸡的只数是右边的几倍?
图片出示:左边20只公鸡右边5只。
2、第二关:“阳光伙伴”体育运动。
出示图(略)。
要求列式表示参加各项活动的人数之间有倍数关系。
3、第三关:开启智慧大门。
出示智慧大门图。
1、提示学生:智慧大门上方有12盏灯,小朋友必须开启一些灯,而且开启的盏数与关着的有倍数关系。如开启——10盏,关着——2盏。10是2的5倍。
要求同桌合作用彩色笔涂色,探究不同的涂色方法。
(五)、课堂总结深化主题。
说说这节课你有什么收获?
工程问题教学设计大全(20篇)篇十七
数学广角——优化(沏茶问题)。
主备人。
赵越。
课型。
新授。
时间。
2016.11.11。
教学目标。
1.学生通过简单的实例,初步体会合理安排时间在解决实际问题中的应用,认识解决问题策略的多样性,形成寻找解决问题最优方案的意识。
2.通过自主探索、合作交流,让学生经历解决问题的过程,初步培养学生的应用意识和解决实际问题的能力。
3.让学生感受到合理安排时间的重要性,体会数学在日常生活中的广泛应用。
重点。
使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的良好意识和能力。
难点。
引导学生从优化的角度在解决问题的多种方案中寻找最优方案。
内容。
环节。
学习流程。
学生活动。
一、联系实际,谈话导入。
二、创设情境。
三、
自主学习,交流展示。
四、知识应用,扩展提升。
五、当堂达标。
六、畅谈收获,寄语。
总结。
老师每天做家务要用20分钟,听音乐10分钟,做完这两件事情需要多少分钟?
在生活中如果我们能够合理安排,不仅能节省时间,还能大大提高我们做事的效率。那今天我们就用同样的方法来学习《沏茶问题》。
1.出示数学书104页例1的情境图。
2.出示沏茶的工序。
怎样才能最快让客人喝上茶呢?
1.出示学习要求。
(1)独立思考,设计方案,完成学习单的内容。
(2)小组交流讨论自己的设计思路。
(3)选择最优方案摆在黑板上,准备展示。
2.小组展示。
3.师生共同总结合理安排时间的窍门。
4.讲解流程图。
5.总结。
1.学生独自完成练习。
2.小对子互相说一说。
3.集体订正。
独立完成,集体订正,统计结果。
通过这节课的学习,你有什么收获吗?请把你的收获分享给大家!
学生自由回答。
引出“同时”
学生自由回答。
引出沏茶的工序。
学生独立用工序图摆一摆,说一说,并用自己喜欢的方式表示出来。
小组交流自己的设计思路,选择即合理又省时的方案进行预展。
总结合理安排时间的窍门。
学生说自己的想法。
学生自由发言。
学生练习。
用“先……再……然后……最后……”表述。
学生畅谈收获。
板
书
设
计
顺序。
同时。
时间。
教
学
反
思
工程问题教学设计大全(20篇)篇十八
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
“求相遇时间问题”的.特征和解题方法。
“求相遇时间问题”的特征和解题方法。
多媒体课件一套。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
1、例6教学。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
工程问题教学设计大全(20篇)篇十九
1、在搭配活动中,初步掌握搭配的规律,训练学生有序思考的能力。
2、通过观察、动手操作、合作交流等活动方式,掌握搭配的方法。
3、在活动中培养学生学习数学的兴趣和用数学的思维来解决问题的意识。
教学重点:结合具体情境,能够进行有序的思考,掌握搭配的方法。
教学难点:使学生有序的思考问题,做到即不重复又不遗漏。
教学过程:
同学们,搭配在我们的生活中有广泛的应用。其实还有很多的各种各样的数学问题每天都发生在我们的身边,只要我们留心观察,善于动脑筋,找规律,就能够解决生活当中的问题。
搭配中的学问,有序,不重复,不遗漏。
工程问题教学设计大全(20篇)篇二十
1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。
2、教材地位及作用。
本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
(二),才能灵活运用这一原理解决各种实际问题。
要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。
根据《数学课程标准》和教材内容以及学生的学情,我确定本节课学习目标如下:
知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。
能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。
情感性目标:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,感受到数学的魅力。
教学重点:引导学生把具体问题转化成“鸽巢问题”。
教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。根据六年级学生的理解能力和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。
学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高解决问题的能力,感受数学学习的乐趣。
在教学设计上,我本着“以学定教”的设计理念,把教学过程分四环节进行:设疑导入,激发兴趣——自主操作,探究新知——归纳小结,形成规律——回归生活,灵活应用。
在导入部分,通过抽扑克牌“魔术”,激发学生的兴趣,引入新知。
根据学生学习的困难和认知规律,我在探究部分设计了三个层次的数学活动。
(一)实物操作,初步感知。
学生通过例1要求通过“把4枝铅笔放入3个笔筒”的实际操作,解决3个问题:
1、怎样放?
重点是让学生明确如果只是放入每个笔筒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。
2、共有几种放法?
这里主要是孕伏对“不管怎样放”的理解。
3、认识“总有一个”的意义。
通过观察笔筒中铅笔枝数,找出4种放法中铅笔枝数最多的笔筒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个笔筒放的枝数是最多的,分别是2枝,3枝和4枝。
(二)脱离具体操作,由形抽象到数。
通过“思考:把5枝铅笔放入4个笔筒,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:
1、理解“至少”的含义,准确表述现象。
(1)通过观察表格中枝数最多的笔筒里的数据,让学生在“最多”中找“最少”。
(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个笔筒里至少放入2枝铅笔的结论。
2、理解“平均分”的思路,知道为什么要“平均分”。抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个笔筒里至少是几枝的方法——就是按照笔筒数平均分,只有这样才能让最多的笔筒里枝数尽可能少。
3、抽象概括,小结现象。
通过“4枝放入3个笔筒”、”5枝放入4个笔筒”等不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识鸽巢原理。
(三)学生自选问题探究。
首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。
在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。
研究的问题来源于生活,还要还原到生活中去。
在教学的最后,请学生用这节课学的鸽巢原理解释课始老师的魔术问题,进行首尾的呼应;再让学生应用“鸽巢原理”解决的生活中简单有趣的实际问题,激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。