教案模板的存在可以帮助教师更好地发现和解决教学过程中的问题。教学实践中积累的一些教案模板范文,供教师在备课过程中参考。
最优三的倍数特征的教案(模板20篇)篇一
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
发展分析、比较、猜测、验证的能力。
我们研究了2、5的`倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。
试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练:
第2题:
让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。
(1)30、45、54(2)30、54(3)30、45(4)30。
四、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。
3的倍数的特征:这个数各位数字之和是3的倍数。
最优三的倍数特征的教案(模板20篇)篇二
理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。
【过程与方法】。
经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。
【情感、态度与价值观】。
在猜想论证的过程中,体会数学的严谨性。
【重点】3的倍数的特征,判断一个数是否是3的倍数。
(一)导入新课。
(二)讲解新知。
组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?
学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。
组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。
提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。
师生共同总结得出:一个数各位上的`数的和是3的倍数,这个数就是3的倍数。
(三)课堂练习。
24584696。
2、尝试在每个数后面加一个数使这个三位数成为3的倍数。
(四)小结作业。
提问:今天有什么收获?
带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。
课后作业:
思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。
最优三的倍数特征的教案(模板20篇)篇三
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
教师准备 ppt课件 计数器 记录表
学生准备 百数表 计数器教学过程
师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的'倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
(学生可能会说个位上是3,6,9的数是3的倍数)
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
最优三的倍数特征的教案(模板20篇)篇四
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的'数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做。
四、课堂小结:
这节课你有什么收获。
最优三的倍数特征的教案(模板20篇)篇五
课堂总会有生成,不管一节课的教学步骤设计的有多严密、多紧凑,课堂教学中总会有新的问题产生,反思本节课的教学有成功也有不足:
1、导入部分。
不足之处:
应该说导入部分形式单一,显得过于死板,如果通过一个小游戏,让学生考考老师,用教师的准确判断激发学生学习本课内容的兴趣,由此引出课题,从而调动学生学习的积极性,把探索的问题抛给学生,激起学生探索的欲望,进而引导学生说出更大的数字,此时教师仍然能准确判断,于是让学生更为佩服老师,想进行探究的欲望会更浓,接下来的探究过程便水到渠成,课堂气氛也会因此而高涨。
成功之处:
探索5的倍数的特征,先引导学生找出2的倍数,并指导找的方法,然后发现、总结2的倍数的特征。这样学生有了一个探索方法,引导学生总结探究方法后,我便放手让学生自己去探索5的倍数的特征了,在合作交流中学生体会到了学习数学的快乐,同时也给了学生一个自主探索的空间,一个交流互动的平台,也使他们获得了学习数学的成功体验。
不足之处:
课堂生成教师要及时准确地把握,并注意语言的艺术性,教师必须进入状态,与学生融为一体。
3、教具学具的使用方面。
成功之处:
我利用百数表,把1-100的数字中5的倍数,2的倍数通过让学生用不同的`符号标出,给学生的感观一个有力的冲击。2、5的倍数的特征变得更直观,更明显,学生的印象会更深刻。
不足之处:
点找的很准确,应用合理。但现在想想,如果把这个百数表制成课件,用多媒体演示出来,而且让2和5的倍数用颜色标出,并在变色闪烁的过程中有声音的提示效果或许会更好些。
教学后的思考:
(1)是否需要验证发现的规律(2、5的倍数的特征),在哪个环节验证效果好。
(2)如何强化学生的知识,使重点更为突出,学生有眼前一亮的感觉。
(3)备学生很重要。
在探究的过程中,课堂气氛没有预想的那么好,在练习中学生才开始活跃起来。也许在对数学活动的探索中,学生不够自信,只是试着说。教师需要做些什么,得以改变学生的状态。
文档为doc格式。
最优三的倍数特征的教案(模板20篇)篇六
我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位。
因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
最优三的倍数特征的教案(模板20篇)篇七
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
准备计数器教具和学具。
一、激活经验。
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)。
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)。
二、学习新知。
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的`想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)。
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)。
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)。
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
三、练习巩固。
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结。
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
最优三的倍数特征的教案(模板20篇)篇八
教学过程:
一、揭示课题:
师:这一节课,老师要带领全体学生进行探索活动,探索的知识是“2、5的倍数的特征”。
二、探索活动。
(一)活动一:想一想:
1、问:5的倍数有什么特征?在下表找出5的倍数,并做上记号。
(1)师:读一读5的倍数,观察它们有那些特征?
(2)同桌互相说一说5的倍数的特征。给5的倍数做记号。
(3)指名汇报:我的发现:个位是0或5的数都是5的倍数。
2、根据5的倍数的特征判断5的倍数:
师:任意说一个数,学生用抢答的形式来判断。
(二)活动二:试一试:
1、在下面数中圈出5的倍数。
2845538075348995。
汇报:你是怎样判断的?
2、在上面表格中找出2的倍数,做。
上记号,说一说这些数有什么特征。
3、自学什么叫偶数,什么叫奇数?
(生答:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。)。
你说我答:(同桌一人说数,一人判断。)。
你任意说一个数,我来判断是奇数还是偶数?
(三)活动三:练一练:
1、把下列数按要求填入圈内。
28354055108495785390。
(1)说一说2的倍数有什么特征?5的呢?
(2)填一填:2的倍数有哪些?
5的倍数有哪些?
哪些数既是2的倍数、又是5的倍数?
(2的倍数有:284010847890。
5的倍数有:354055109590。
既是2的倍数、又是5的倍数:4090)。
(1)师:你是怎样判断的?可以不用计算吗?为什么?
(2)生答:根据2和5的特征来判断,85的个位不是偶数所以不能装完,85的个位是5,所以能装完。
(四)活动四:数学游戏:
1、每人准备:0-9的数字卡。
2、师说要求,生摸。
问:摸出几可以和“5”组成2的倍数。
摸出几可以和“5”组成5的倍数?
3、同桌合作:
一人说要求,一人按要求摸数。
三、总结。
谁能谈谈通过这节课的学习,你有什么感受?
板书设计:
个位上是0或5的数是5的倍数。
个位上是0、2、4、6、8的数是2的倍数。
2的倍数有哪些?5的倍数有哪些?哪些数既是2的倍数、又是5的倍数?
2的倍数有:284010847890。
5的倍数有:354055109590。
既是2的倍数、又是5的倍数:4090。
最优三的倍数特征的教案(模板20篇)篇九
4、从课堂教学结构反思,课堂结构紧凑、合理,合理地安排教学活动,各部分衔接自然、流畅,时间长短适当,教学重点、难点突出,合理高效的教学结构安排并能恰当的组织材料,学习重点、难点。
5、从课堂的随机生成反思,对后进生解题的生成优待学习改进。
整节课实际就是让学生经历“观察——操作——讨论——验证得出结论——解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学力求把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机融为一体,同时还要充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,比如:让学生写电话号码,列举生活中的数等,使学生真正领略到数学就在我们身边,生活中处处有数学。反思本节课的教学,我也发现有许多环节处理极不得当,有待进一步改进。如学生提出最小的偶数是什么?其实我们没有必要在这个问题上花很多的时间,因为小学阶段我们只在0除外的自然数范围内研究倍数和因数。所以我们现在只能在这个范围内说最小的偶数是2。其他也不适于多说,以免让学生混乱。
我们知道,一个数的倍数有无数个,如果随机给你一个数,有没有更好的方法来判断是不是2、5的倍数呢?有,如果这节课认真听,你肯定能掌握其中的奥秘。由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。二是紧密地联系学生的生活。本节课我充分利用了与学生生活密切联系的学号,使学生明白数学来源于生活,生活即是数学。我安排了“请学号是2的倍数的同学举起左手”、“请学号是5的倍数的同学举起右手”的练习,以及判断自己的学号“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。这即巩固了学生对奇数和偶数意义的理解。又让学生对规律的运用更加灵活了,学生非常喜欢这样的形式。真正也让学生体会到了“数学源于生活,生活即数学”。
不足之处是:在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。
最优三的倍数特征的教案(模板20篇)篇十
课型:新授课。
主备:顾欣莹。
研讨时间:2016年2月26日教学内容:教科书第33~34页例。
5、练一练和“你知道吗”,第36页练习五第8~10题。教学目标:
1、使学生认识和掌握3的倍数的特征,能正确判断一个数是否是3的倍数。
2、使学生经历探索和发现3的倍数的特征的过程,培养学生的观察、比较和分析、概括等能力。
3、使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感,增强学习数学的积极情感。
教学重点:认识并掌握3的倍数的特征。教学难点:研究并发现3的倍数的特征。教学准备:计数器,百数表教学过程:
一、激趣导入。
1、谈话:三只小青蛙在玩跳格子游戏。
提问:第一只青蛙要跳到2的倍数,第二只要跳到5的倍数的格子,它们分别该怎么跳呢?
生:第一只可以跳到。
24、52、60、8。
6、50、28、30.第二只可以跳到。
25、60、7。
5、50、30.(回答比较慢的)师1:你是怎么知道的?
(回答比较快的)师2:你是如何又快又准的找到这些数的呢?
生:因为2的倍数的特征就是个位上是。
师预设1:你怎么说的这么慢啊?
师预设2:找3的倍数怎么没有像找2和5的倍数那样顺呢?
师预设3:你真棒,你是怎么知道的,那其他同学想不想知道这个规律是怎么探究来的?
2、引入课题:今天这节课,我们一起来研究3的倍数特征。(板书课题)。
二、探究发现。
1、寻找方法。
2、圈数验证。
(1)圈出3的倍数。
师:探究3的倍数能否也用这个方法呢?请同学们拿出百数表,在百数表中把3的倍数都圈出来。
学生独立在百数表中圈出3的倍数。
交流、课件呈现百数表里3的倍数,有错的改正。(2)探索特征。
提问:观察这些3的倍数,他们有什么共同特征?省锡中实验学校小学数学。
预设1:竖着看个位上。
3、6、9。师(1):其他同学有没有意见?师(1):看大家辩论的这么激烈,归结成一个问题:我们还能像判断2和5的倍数那样,只看个位上的数字来判断3的倍数吗?从个位上看不出3的倍数的特征,该怎么办?启发(1):既然不能用2和5的倍数的特征来推测3的倍数,那么我们能否从其他角度来考虑3的倍数的特征呢?预设2:生:(1)斜着看,个位1,2,3,4,5,6,7,8,9都有。
(2)每个数加9都是下一个数。
师:为了便于大家的观察,老师把不是3的倍数的数隐藏起来。我们选择最长的这行来研究。
(课件出示:
9、18、27、36、45、54、6。
3、7。
2、81)。
要求:画算珠:选择2个数填在()里,再在计数器上画一画。数算珠:数一数珠子的个数,你有什么发现?在小组里说一说。师:你选了哪2个数,有什么发现?(板贴相应计数器)生:都用了9个珠子摆成的。
师:其他同学的数呢?(生答完课件呈现相应的计数器)你说。师:(全部呈现)通过研究,我们发现这组数据:它们2个数位上的数字的和是9。(板书:2个数位上的数字的和是9)。
师:这会不会就是3的倍数的特征呢?我们来观察其他几组。(课件出示百数表中所有是3的倍数的数)。
3、6、12、15、18”。说一个写一个。(教师板书:
3、6、12、15、18)。
师:通过我们的研究,发现这些数2个数位上的数字之和可能是。
3、6、9、12、15、18,此时,你们又感觉到了什么?生:这些和都是3的倍数。(师板书:3的倍数)。
师:百数表里还有一些数,它们不是3的倍数,那会不会有刚才的特征呢?(课件出示百数表中不是3的倍数的数)你来选个数验证一下(2个人回答)师:通过对百数表的研究发现3的倍数,它们2个数位上数字之和是3的倍数,那么这个数就是3的倍数。(3)扩展数的范围验证规律。
师:百数表之外还有三位数、四位数或五位数等等更大的数,怎么去研究3的倍数的特征呢?预设1:圈数。
师1:数太多了,怎么办?省锡中实验学校小学数学。
预设2:写出几个更大的数。
师2:用你的这个方法,我们继续来探究。要求:
1、先在()里填一个较大的数,再在计数器上画一画。
2、用计算器计算这个数是否是3的倍数,如果是3的倍数看看它有没有这样的特征。
3、根据验证结果,和同桌说一说3的倍数有什么特征。
请两组四位同学上台操作正例。校对,并观察有没有以上规律。师:通过计算,你写的数是3的倍数吗?生:是。
师:它符合我们刚才发现的规律吗?生:符合规律。另一组。
师:你们组写的数是3的倍数吗?生:是。
师:它也符合这个规律吗?生:符合规律。
师:所以它是3的倍数。
问1:有没有同学举的不是3的倍数。问2:刚才老师看见有同学写的是(),每个同学都用计算器计算一下它是不是3的倍数?生:不是。
师:与前面2个例子相同吗?生:不同。
师:如果时间充足的话,我们可以举更多、更大的数来验证。(4)总结“3的倍数的特征”。
生1:把数位上的数字加起来,和是3的倍数。
生2:不管是几位数,只要是3的倍数,把它各个数位上的数字都起来,和一定也是3的倍数。
师:正如大家所说的,一个数的各个数位上的数字的和是3的倍数,这个数就是3的倍数。这就是3的倍数的特征。
板书:3的倍数的特征——各个数位上的数字的和是3的倍数。直接把之前的2个数位覆盖写省略号。带他们理解各个数位的意思。
师:反之,一个数的各个数位上的数字的和不是3的倍数,这个数就不是3的倍数。
师:如果是4位数那是把几个数位加起来?5位数呢?
3、回顾小结。
师:今天学习了什么知识?它的特征是什么?我们是怎样发现的呢?
生:今天学习了3的倍数的特征。各个数位上的数字的和是3的倍数。圈数、观察、举例验证、得出结论。
三、练习巩固。
师:通过动脑、动手,我们发现了一个规律,接下来我们就运用这个规律。智利大闯关。
第一关:1完成“练一练”第1题。省锡中实验学校小学数学。
学生圈出3的倍数,说一说判断的理由。
2、完成“练一练”第2题。学生读题明确题目要求。
提问:这几道算式有什么共同特点?如果一个数除以3没有余数,说明这个数与3存在什么关系?如果有余数呢?你打算怎样判断?学生判断,说明理由。指出:是3的倍数的数除以3没有余数,不是3的倍数的数除以3就有余数。第二关:
指出:他们相邻两个数之间都相差3。
4、完成练习五第10题。学生把6的倍数圈出来。
引导观察:6的倍数也是几的倍数?明确:6的倍数一定是。
2、3的倍数。
追问:3的倍数都是6的倍数吗?2的倍数呢?
小结:6的倍数一定是。
2、3的倍数,但是。
2、3的倍数不一定是6的倍数。师:看来同学们掌握的真不错,现在难度提升!看看同学们能否顺利通关。第三关:
5、完成练习五第9题。从0、5、6、7中选出3个数字,组成是3的倍数的三位数。你能组成多少个?学生读题,写出符合要求的不同的三位数。
5、6、7,只有这样的3个数字才能组成3的倍数。
说明:看是不是3的倍数,只要看各位上数的和是不是3的倍数,和数字的顺序没有关系。
四、拓展延伸学习“你知道吗”。
师:刚才通过举例发现3的倍数的特征,我们举的例子是有限的,能否用更严谨的方法来证明这个结论呢?。
五、全课小结。
1、提问:今天学习了哪些内容?它的特征是什么?
2、课后延伸:虽然今天的课到此为止了,但是对数学的探索是永无止境的,除了今天学习的3的倍数的特征,你还想探索哪些数的特征?请同学们课后自己去探索和发现吧。
计数器2个。
三位数、四位数、五位数的计数器1个。
3的倍数的特征:各个数位上的数字之和是3的倍数。2个数位上的数字的和是9。
错题收集。
教学反思:
最优三的倍数特征的教案(模板20篇)篇十一
首先对学生进行一个简单地复习,主要是检查学生对因数和倍数的掌握情况,然后再教学2和5的倍数特征,教学时教师从学生已有的生活经验和知识基础出发,让学生在情境中通过观察、归纳、概括得2和5的倍数的特征,其次在介绍奇数和偶数时,提醒学生注意“0”是一个特殊的数,0是2的倍数,也是偶数。
二、教案。
授课人。
孔水兰。
学科。
数学。
学校。
宁墩中心小学。
课题。
教学。
目标。
1、让学生通过探索2、5的倍数的特征过程,掌握2、5倍数的特征,并会正确的判断一个数是否是2、5的倍数。
2、理解奇数、偶数的意义,能正确判断一个数是奇数还是偶数。
3、通过学习,培养学生观察与分析能力,提高学生的思维水平。
教学重点。
教学难点。
能灵活地写出一个符合要求的数。
教具学具。
单号入口、双号入口卡片,1~50的数字卡片、小黑板。
教学方法。
谈话、观察、比较、归纳。
教师活动。
学生活动。
设计意图。
一、 复习导入。
教师:1、什么叫因数?
什么叫倍数?
2、下面各组数,谁是谁的因数;谁是谁的倍数?(小黑板出示)。
(1)12和6 (2)28和7。
(3)13和1。
二、探索新知。
1、情境引入。
提问:(1)大家喜欢看电影吗?
(2)从这幅图中你看到了什么?
(3)电影院的入口处分别有什么?
提示?
(4)座号是多少的应该从双号入口进?
(2)结合学生回答,板书:
2×1=2 2×6=12 。
2×2=4 2×7=14。
2×3=6 2×8=16。
2×4=8 2×9=18。
2×5=10 2×10=20……。
3、教学奇数、偶数。
教师:一个数是不是2的倍数,还有很多知识,你们想知道吗?请打开书第17页自学。
提问:你们从书上还知道了些什么?
(1)教师:指名说说5的倍数(从小到大的顺序)。
(2)板书:
5、10、15、20、25、30……。
(3)出示课本第18页的表格。
(4)归纳:各位上是0或5的数,是5的倍数。
(5)练习。
布置教材第18页“做一做”
三、 拓展练习。
按下面的要求用0、3、4组成三位数。(小黑板出示)。
(1)2的倍数。
(3)既是2的倍数,又是5的倍数。
四、全课小结。
教师:通过这节课的学习,你都有哪些收获?
五、 作业 。
教材第20页第1~3题。
个别学生回答。
指名回答。
观察课本第17页的情境图,然后回答教师的提问。
(1)学生观察板书,探索2的倍数的特征,然后得出结论。
(2)学生说数、验证、同桌交流。
学生看第17页自学。
说说什么是偶数?什么是奇数?
(1)观察这些数,想一想有什么特征?
(2)学生找出5的倍数。
(3)说一说。
(4)口头回答。
学生尝试做一做,可以同桌交流、讨论。
学生独立完成作业 。
(通过口答练习,让学生对上节课所学过的知识进行复习,使学生进一步理解因数、倍数两个数学概念)。
从贴近学生的生活情境入手,让学生感受数学源于生活,激发学生学习和探索的兴趣。
让学生进行数学思考,自己探索2的倍数的特征。并请同桌说数验证一下,注重了数学归纳。
让学生自学奇数、偶数,培养学生的自学能力。
渗透迁移的数学方法,从探索“2的倍数特征”的方法,迁移到“5的倍数的特征”。经历“猜测—探索—验证—归纳”完成知识的形成过程。
练习设计注重开放性和思考性,有利于知识的巩固和思维的提高。
板书设计:
2的倍数是偶数(0是偶数),不是2的倍数的数是奇数。
个位上是0的数同时是2和5的倍数。
点评:
1、从贴近学生生活的情境入手,激发了学生的学习兴趣。
2、整节课学生通过“观察—猜测—探索—归纳”,完成知识的形成过程,体现了数学思考的严谨性。
3、练习涉及丰富、有层次,满足不同层次的要求,学习效果好。
最优三的倍数特征的教案(模板20篇)篇十二
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。但和这个数的个位上的数字有关。使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而老练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得可持续发展的动力。
最优三的倍数特征的教案(模板20篇)篇十三
在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。
与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:
复习引入,设置悬念。
出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:
摆成2的倍数(学生回答356536并说原因)。
摆成5的倍数(学生回答365635并说原因)。
摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)。
问:个位上是3,6或9的数是不是3的倍数?
学生验证,发现这四个数都不是3的倍数。
问:3的倍数是不是看各位上的数呢它到底有什么特征?
合作探究。
在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:
3的倍数有。
各数位上,数的和。
和是不是3的倍数。
12。
1+2=3。
是
汇报交流:你发现了什么?
得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。
1,基础练习:
(1)判断下列数是不是3的倍数(4213426878)。
学生回答:例。
42是3的倍数,134不是3的倍数,
因为4+2=6,6是3的倍数,因为1+3+4=8,8-不是3的倍数。
所以42是3的倍数。所以134不是3的倍数。
(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。
(3)在下面的方框里填上一个数字,使这个数是3的倍数。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的'掌握情况还是不错的。
最优三的倍数特征的教案(模板20篇)篇十四
教学内容:北师大版数学五年级上册6—7页的内容。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学重点:目标1。
教学难点:目标2。
教学过程;
教师活动。
学生活动。
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?
2、请你举例说明。
3、说说能同时被2和5整除的数有什么特征?
1、在书上第6页的表中,找出3的倍数,并做上记号。
教师参与到讨论学习中。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
4、活动四:练一练。
361754714548。
2、选出两个数字组成一个两位数,分别满足下面的条件。
(2同时是2和3的倍数。
(3同时是3和5的倍数。
(4同时是2,3和5的倍数。
活动四:实践活动。
在下表中找出9的倍数,并涂上颜色。
指名说。
请学生说,教师把学生的举例板书在黑板上。
观察特征。用自己的话说一说。
1、先独立完成,看谁找的快?
2、先独立思考,想出自己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的数也没有什么规律。
生三:将每个数的各个数字加起来试试看,
3、自己先找几个数试一试,然后在小组内说说你验证的结论。
4、先自己圈,然后说说你是怎样判断的?
1、自己独立完成,在小组内说说自己的想法。
2、独立完成,说说你的窍门和方法。
可以在自主实践以后再交流。
课后反思:3的倍数的方法,有的学生在奥数班已经学过。因此在探索问题上可以采取已知结论,然后再验证的方法进行练习。学生在交流时还说出了类似弃9法的判断方法,也可以用到判断3的倍数上。这样学生的判断方法就很多样了,学生对后面的这种方法接受很快,也很乐意运用。但在实际作业中,我感到学生对3的特征的运用不是很主动,不象2和5的特征来得快,似乎有些想不到。因此,要加强练习。
最优三的倍数特征的教案(模板20篇)篇十五
教学过程中,在学生掌握知识的同时,注重让学生了解科学的数学研究的'过程。一堂课的知识目标是很容易达成,但是要渗透数学思想方法或科学的研究方法,就提出了较高要求。在课堂上引导学生现在“百数表”中找规律,再再比100大的数中举例验证。通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果。经过于老师的倾心评课,以下几点问题需要思考实践:
1、对学生已经发现的的问题不需再重复,这样就可以节省出教学时间。
2、偶数的定义需要学生用自己的话解释一下。对奇数的定义理解一定要讲解透彻,为以后分辨质数打下基础。
3、0,2,5排能够被5整除的数要说说排序方法,以免丢漏数。
4、第一题的问题要求再明确一些,学生答题可能会更快。
最优三的倍数特征的教案(模板20篇)篇十六
这一周我和学生一起学习了《2、5的倍数的特征》这一课,教学时通过游戏的情境很好地激发学生的求知欲,探究新知的热情,学生借助“百数表”分别直观地找出2和5的倍数,通过合作和独立思考的方式概括出2和5的倍数特征,再举例比100大的'数加以验证,以“猜想——验证——结论”的学习方式符合学生的认知特点,结合2的倍数特征,进而让学生认识、理解奇数和偶数含义,再通过游戏获得‘既是2又是5的倍数特征’让学生应用所学的知识解决数学简单的生活问题,达到了教学目标。
学生在学习中,体验了探索的成功乐趣,也对数学产生的兴趣。对学习3的倍数打下了基础。当然本节课的教学不失为一堂指导学生进行探究性学习的课,但我总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些不够。在以后的教学中应力争避免此种情况的发生也有一部分学生容易混淆倍数的特征。这还有需要我们进一步的学习巩固中改变。我相信只要有信心,有方法,什么困难我们都能克服的。
最优三的倍数特征的教案(模板20篇)篇十七
这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。
在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有()。
2、组成的数是5的倍数的有()。
3、组成的数既是2的倍数、又是5的倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
最优三的倍数特征的教案(模板20篇)篇十八
在教学中,当学生找到百数表内5的倍数特征时,我追问学生,“是不是在所有的自然数中,5的倍数都有这个特征呢?”学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学习态度。我告诉学生是不是有这个特征,我们没有研究过,只是我们的猜想。还需要我们进一步去验证。大部分学生还是比较认可的。没有经过研究,怎么能知道是呢?有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时我才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有验证后,猜想才可能变成结论。相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论。
这节课中,当学生研究出5的倍数的特征后,我引导学生来回忆。我们是怎样来研究5的倍数的特征的?让学生体验经历“找数——观察——猜想——百数表中验证——更大数验证——结论”这一研究过程,然后让学生独立去研究2的倍数的特征,再次体验2的倍数的特征研究过程,我想学生就有了更完整的体验。
整节课学生经历了“观察,动手,发现规律、验证规律、得出结论,运用规律”的过程。著名数学家波利亚说过:“学习任何知识的最佳途径是由学生自己去发现。因为这种发现,理解最深刻,也最容易掌握其中的`内在规律联系。”离开了学生的学习活动,学生的发展将是空中楼阁。通过活动落实教学任务,让学生用自己的思维方式去探究,自己去体验,能有效促进学生主体的发展。学生经历和感悟“观察,动手实践,发现规律、验证规律、得出结论”的学习过程比学到的数学知识更有价值。如果教学中能长期坚持运用这些学习方法,而且学生一旦形成自己自主的学习方式,那将是非常可贵的。
1.2和5倍数的特征,都在个位数,学生极易理解和掌握,奇数、偶数的概念,学生掌握也并不困难,所以这部分内容的学习从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,使学生经历观察、操作、归纳、类比、猜想、交流、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学习的兴趣,增强学好数学的信心。出现疑难问题或意见不一时,通过小组或集体讨论解决,教师发挥引导的作用,消除学生的疑惑;关注学生的个体差异,使不同层次的学生在练习中获得不同的发展,体验成功的喜悦。
2.学习方法的指导非常必要,让学生感受数学是一门严谨的学科,数学研究的方法就在平时的学习中,并不神秘,为学生以后的数学研究打下良好的基础。
最优三的倍数特征的教案(模板20篇)篇十九
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
“给孩子一个跳板,让他跳一下就能摘到最鲜美的果子”,在下次的教学中,我应该给学生更多探索的空间和出错的机会,这样才能让他们的数学思维更出彩,这也是新课程的目标。
3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。
下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。
“试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。
整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。
最优三的倍数特征的教案(模板20篇)篇二十
本节课的教学整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:
1、联系生活,培养学生学习数学的兴趣。
本节课在学生已学会找一个数的因数和倍数的基础上,我围绕“2、5倍数的特征”这一教学内容,从学生已有的生活经验出发,结合学生的认识规律,创设“老师和一名学生进行比赛,准确而迅速地判断一个数是2或5的倍数,其中有什么奥妙”的问题情境。从而引起学生的探求欲望,创设观察、操作、合作交流的机会;充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,比如:让学生写电话号码,列举生活中的数等,使学生真正领略到数学就在我们身边,生活中处处有数学。
2、让学生经历科学探索的过程。
3、通过平等对话实现师生互动、生生互动。
教师与学生是课堂生态系统中的两个主体因素。教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。我在本节课的教学程中,通过师生互动、生生互动,努力让课堂教学不仅是学生学习知识的过程,而且是师生共同建构知识的过程,从而实现师生知识共享、情感交流、心灵沟通。整个课堂教学活动,给学生创设宽松的学习氛围,让学生始终感到课堂是一个学习知识的大家庭,任何不成熟的想法在共同的交流中是可以成熟的,让学生自觉地参与到解决问题的行列中。
4、精心选题,发挥习题的探索性和趣味性。
习题的设计力争在突出重点、突破难点、遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课我设计的练习题有巩固练习的基本题和利用2、5倍数的特征灵活解决问题的习题。充分让学生感知数学与生活的密切联系。
反思本节课的教学不失为一堂指导学生进行探究性学习的课,但作为教师,总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。
本节课在制定目标的时候,从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,我引导学生通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果,并进行应用。
1、渗透“范围”意识。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。
所以我们看到,首先教师引导学生确定了“小范围”的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
2、感受“猜想”与“结论”的不同。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征——2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是“知道”的过程,没有经历“探究”过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。并用适当的方法来验证自己的猜想,从而得到正确的结论。
随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
一、互动、质疑,激发学生的探究兴趣。
好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。
二、鼓励学生独立思考,经历猜测验证的过程。
数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
三、小组合作,发挥团体的作用。
动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。
四|、通过平等对话实现师生互动、生生互动。
教师与学生是课堂生态系统中的两个主体因素。教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。我在本节课的教学程中,通过师生互动、生生互动,努力让课堂教学不仅是学生学习知识的过程,而且是师生共同建构知识的过程,从而实现师生知识共享、情感交流、心灵沟通。整个课堂教学活动,给学生创设宽松的学习氛围,让学生始终感到课堂是一个学习知识的大家庭,任何不成熟的想法在共同的交流中是可以成熟的,让学生自觉地参与到解决问题的行列中。
五、精心选题,发挥习题的探索性和趣味性。
习题的设计力争在突出重点、突破难点、遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课我设计的练习题有巩固练习的基本题和利用2、5倍数的特征灵活解决问题的习题。充分让学生感知数学与生活的密切联系。