教学计划是一份教师为了实现学生的学习目标而事先制定的指导性文件。通过学习这些教学计划范文,教师可以提升自己的教学能力和教学水平。
精选可能性教学设计人教版(通用16篇)篇一
教学目标:
1、在具体的比赛、统计、观察等活动中,了解平均数的实际意义。
2、探索掌握求平均数的方法,体会解决问题策略的多样化。
3、密切数学与生活的联系,增强学生的应用意识,培养学生分析数据、发现问题的能力。
教学重点:理解平均数的实际意义,掌握求平均数的方法。
教学难点:理解平均数的实际意义。
教学过程:
活动(一)、情境激趣(渗透数学源于生活实际的思想)。
1、谈话引入。
师:光说不练不是好汉,今天我们就先在班级开展一次男女生踢毽子比赛,好不好?
2、队员入场。
师:下面就请我们的队员入场!(男女各四人)。
3、采访队员。
4、同学猜想。
5、举手表决。
师:这样说老师一点也听不清,这样吧,请支持男队的举手,请支持女队的举手,支持率还真差不多,看来还真得到赛场上见!
6、裁判入场。
师:下面就请我们的裁判员入场!
7、踢毽子比赛。
师:下面老师宣布比赛规则:每名运动员的踢毽子的时间是20秒,踢坏了可以接着踢,记总数。请裁判员做好记录。
活动(二)、探索意义(初步理解平均数的现实意义)。
1、同学计算。
师:现在比赛结束了,怎样才能知道哪个队会获胜呢?
2、宣布比赛结果。
师:谁来说一说你是怎样计算的?
学生汇报,老师板书。
师:女队一共踢了120个,男队一共踢了116个,因为120116,所以比赛获胜的是女队!
3、老师参与。
师:看到同学们踢的这么开心,王老师也想踢一次,现在王老师申请加入男队,请同学们帮老师看时间。
4、再次公布比赛结果。
师:这回请同学们再算一算男队一共踢多少个?
学生汇报结果。
师:再来看女队一共踢了120个,男队一共踢了136个,因为120136,所以现在老师宣布:男队获得了这次比赛的胜利。
5、激起矛盾。
师:老师看到男同学得意洋洋,而女同学直喊不公平,谁能说一说为什么不公平?
6、出现问题。
7、引出平均数。
生:既然人数不同,比总数肯定不公平,我们可以比平均数。
师:那么这节课我们就来学习《平均数》,(板书课题)。
师:平均数是怎么回事,以这次比赛为例说一说。在小组内先讨论一下。
学生小组讨论、汇报。
8、猜想结果。
师:我们再以女队为例,请同学们猜想一下,女队的平均数会在什么范围?
师:那男队呢?
9、计算完成。
师:下面就请同学们试着求一求男队和女队踢毽子的平均数,一方面来验证一下我们的猜想是否正确,另一方面我们来比较一下哪个队会获胜。
师:谁来说一说你是怎样计算的?
学生汇报。
师:同学们看一下我们的猜想是否正确?
10、学生初步理解平均数。
11、再次宣布比赛结果,(对学生进行失败教育)。
师:这回我宣布获胜的还是女队。看来王老师在踢毽子方面也是一个弱者,也没能帮助男获胜。王老师要向男同学们说:胜败乃兵家常事,再说失败乃成功之母,课间我们继续练习,争取下次比赛我们获胜。
12、再次理解平均数的含义。
13、总结求平均数的方法。
师:我们理解了什么是平均数,谁再来说一说怎样求平均数?
学生回答,老师板书。
14、理解平均数的用途。
15、理解平均数的现实意义。
师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
活动(三)解决实际问题。(进一步探索求平均数的方法,理解平均数在生活中的实际意义,培养学生的自学能力)。
1、探索移多补少法。
学生解答。
师:你是怎样计算的?还有不同的想法吗?
学生汇报。
小结:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。同学们今后在求平均数的问题时,可以用计算的方法,也可以用移多补少的方法。
2、自学书中例2。
师:请同学们把书翻到43页,自己学习这一页的内容。
师:通过自己学习你知道了些什么?
3、质疑问难。
活动(四)综合练习。
不同方法解答。
2、对比练习(理解平均数和平均分的区别)。
(1)老师把9支铅笔平均奖励给踢毽子比赛获一等奖的3名同学,每人获得几支铅笔?
(2)老师把9支铅笔奖励给踢毽子比赛获得前三名的同学,平均每人获得几支铅笔?
先解答,再比较一下这两道题有什么相同点和不同点?
老师小结:(1)题是把9支铅笔平均奖励给踢毽子比赛获一等奖的3名同学,每人实实在在获得3支铅笔,这是我们以前学过的平均分。
(2)题是把9支铅笔奖励给踢毽子比赛获得前三名的同学,平均每人获得3支铅笔,不是每人都是3支,可能是2支、3支、4支,这是我们这节课学习的平均数。
3、大屏幕出示超市销售甲、乙两种饼干情况的统计图。
(1)哪种饼干第一季度的月平均销售量多?多多少?
(2)如果你是超市经理,第二季度你会怎样进货?
(3)分析一下乙种饼干销售量越来越好的原因。
活动(五)总结。
师:通过这节课的学习,你有哪些新的收获?
师:既然同学们有这么多的收获,老师就留个作业,今天我们在这里上了一节数学课,请你对我们这节课上的是否满意(或成功)打一下分,满分是十分,回去后在小组内求一求平均分。下节课我们一起交流。
板书设计(略)。
精选可能性教学设计人教版(通用16篇)篇二
1、运用分数表示可能性的方式,能自主的设计一些活动方案。
2、对实际生活中的事件与现象,能运用可能性的知识进行合理的设计。
1、复习分数表示可能性大小的方式。
2、教师向学生提出设计方案的具体要求。(投影出示题目)。
3、小组合作设计方案。
各小组在设计时,教师不要作过多的提示,要充分发挥学生的想象力,以便学生设计出各种与众不同的设计方案。
4、汇报交流。
在交流时,首先请各小组汇报各自设计的方案并说一说设计时的想法。对于不符合设计要求的方案,教师也不要急于否定,而应让学生说一说他们的想法,并结合他们的想法加以引导。
5、归纳设计特点。
学生在交流汇报后,教师可以把每一种每一种方案的设计均用分数的形式表示出来,并引导学生观察各种不同方案中的共同点,从中发现设计的基本特点。
6、课堂练习。
88页做一做,生独立做。
7、布置作业。
88页的实践活动。
学生可独立设计,也可以是以小组为单位设计。
第4课时。
[教学内容]数学与生活(第91页)。
[教学目的]本节课设计的活动目的是将学生所学的知识进行综合,并能解决一些实际问题。
1、复习。
在开展活动前,先组织学生复习分数的认识与加减法的知识内容。
2、投影出示活动题目。
呈现数据表后,可以请学生根据所提供的信息,自己提出数学问题,并能自己解答。
3、组织活动。
师按顺序当场组织学生开展调查活动,了解本班学生迎新年的设想(也可让学生以小组的形式进行)。
4、组织“长跑接力”活动的讨论。
这一活动应组织学生开展多次讨论。第一次讨论5个接力点的位置,每个位置的确定都应该是有根据的。第二次讨论位置设计的合理性问题,要让学生说一说不合理的理由。第三次讨论重新设计的问题,在讨论前也可以让学生独立思考,然后再组织讨论新的设计。
第5课时。
[教学内容]有奖游戏(第92页)。
[教学目的]。
1、使学生能用所学知识解决一些实际问题。
2、密铺活动有助于学生进一步体验所学图形的特征,感受数学在实际生活中的应用,发展空间观念。
[教学过程]。
1、投影出示“有奖游戏”图。
2、让生表示游戏获奖的可能性。
先让生仔细观察投影图,再把每一种游戏获奖的可能性表示出来。
3、学生小组讨论。
“有奖游戏”是一个开放性的活动,学生不一定以中奖的可能性大小来确定参加的游戏,它还包括各人对奖品的喜爱程度。
4、让学生说一说自己愿意参加的项目,并说出理由。
5、布置作业。
调查生活中的有奖游戏,并自己设计一个“有吸引力”的游戏。
精选可能性教学设计人教版(通用16篇)篇三
教学目标1认识简单的等可能性事件。
2会求简单的事件发生的概率,并用分数表示。
教学难点验证掷硬币正面、反面朝上的可能性为1/2。
教学过程教学方法和手段。
引入一、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
教学过程二、新授。
(1)在我们生活中,存在着各种可能,比如抛硬币,硬币落回你手心时候,可能是正面朝上,也可能是反面朝上,那么哪一面朝上的可能性大呢?或者说可能性一样大。
(2)下面我们带着这个问题来看一段录像。
出示课件中世界杯赛前裁判用抛硬币的方法决定发球的录像。
(学生争论中…….)。
好,既然大家争论不休,这样,给大家2分钟。大家按照屏幕上的方法来抛硬币,并填写正面朝上和反面朝上的次数。
三、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(限时2分钟)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近12。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是12。
p99做一做。
p100练习201~3题目。
小结与作业。
课堂小结通过今天的学习,你有什么收获?
事件存在着可能性,有“等可能性”和“不等可能性”
课后追记。
本课由于采用了课件(录像)形式,学生兴趣盎然。
之前学生对于可能性的学习和认识只是停留在“一定”“不会”“可能”“可能性大”:“可能性小”等基础上,本课又进了一步,用数学的语言(分数1/2,1/3,1/4)或者百分数50%等来描述。
本课涉及的是“等可能性”
第2课:可能性(二)。
教学内容p101例2及练习二十一第1-3题。
教学目标1、会用数学的语言描述(分数)获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识。
知识重点让学生认识到基本事件与事件的关系。
教学难点让学生认识到基本事件与事件的关系。
教学过程教学方法和手段。
教学过程一、复习。
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是118。
2、画图转化,直观感受。
(1)每一个人得花的可能性是118,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是118,两个人就是218,……9个人就是918,女生的可能性也是918。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
课堂练习p101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
小结与作业。
课堂小结通过今天的学习,你有什么收获?
课后追记。
本课是在基本事件等可能性的基础上学习事件的可能性,这时候要看看总共有多少基本事件,每种基本事件有几种结果,占用了所有基本事件的几分之几。在此基础上构成了“事件的可能性”
精选可能性教学设计人教版(通用16篇)篇四
教学内容:p.98.主体图p.99.例1及练习二十第1-3题。
教学目的:
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
3、在教学中渗透环保教育。
教学难点:验证掷硬币正面、反面朝上的可能性为。
教学准备:主体图挂图或投影,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
教学过程:
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
教学内容:p.101.例2及练习二十一第1-3题。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:让学生认识到基本事件与事件的关系。
教学准备:投影仪、扑克牌。
教学过程:
一、复习。
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是。
2、画图转化,直观感受。
(1)每一个人得花的可能性是,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是,两个人就是,……9个人就是,女生的可能性也是。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
3、小结。
4、巩固练习。
完成p.101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
三、练习。
完成练习二十一。
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
2、第二题,学生在独立设计,全班交流。
3、第三题,独立思考,小组合作,全班交流。
四、课内小结。
通过今天的学习,你有什么收获?
精选可能性教学设计人教版(通用16篇)篇五
一、填空题。
1、任意从装有10枚白子和12枚黑子里摸出1枚子,那么摸到()的可能性大,摸到()的可能性小。
2、在下面的括号里填“一定”、“可能”、或“不可能”。
明天()会下雨。太阳()从东边落下。哈尔滨的冬天()会下雪。这次测验我()会得100分。
3、
1、从一副除去大、小王的扑克牌中任意抽取一张是5的概率为。
2、小华统计了全班同学的鞋号,并将数据记录在下表中。
精选可能性教学设计人教版(通用16篇)篇六
1、知道有些事情的发生是确定的,有些则是不确定的,并能用“一定”、“可能”、“不可能”等词语来描述。
2、知道事情发生的可能性是有大有小的,可能性的大小与物体数量有关。
3、培养学生的表达能力和逻辑推理能力。
二、教学重难点。
教学重点:体验事件发生的可能性。
教学难点:会用“一定”、“可能”、“不可能”正确地描述事件发生的可能性。
三、教具学具准备:
多媒体、纸盒子、白色和黄色的小球。
四、教学过程。
1.创设情境,引入课堂。
师:同学们,你们喜欢听故事吗?今天老师就给大家带来一个有趣的故事。希望同学们配合老师把故事讲完整。
相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。
你们认为这个大臣摸纸条时会出现什么结果?
预设生:奴隶可能摸到生,也可能摸到死。
师:对,大家用了一个词“可能”。就是两种结果都有可能。
预设生:一定死,不可能生。
预设生:一定生。
师:剩下的当然写着“死”字,不知真相的人们以为他吞下的是生,国王“机关算尽”,想让大臣死,反而搬起石头砸自己脚,让机智的大臣死里逃生。
(引入课题)师:生活中的事情就像故事中的一样,有些我们不能肯定他的结果,有些则可以肯定它的结果,类似的例子还有好多。这就是今天我们要一起研究的内容,事情发生的可能性。(板书:可能性)。
2.动手操作,探究新知。
师:和老师一起玩一个摸球游戏。游戏规则:老师和男生代表以及女生代表进行摸球游戏,如果摸出黄球,则该组加1分,否则不得分。每摸出一次后放回进行下一次,累计摸球5次,得分高的队伍获胜。
注意事项:每摸一次,老师在黑板上用“正字法”纪录一次,纪录完毕后放回去进行下一次,在下一次摸之前为了公平起见先摇一摇。
(预设结果:男生摸不到黄球,老师每次都摸到黄球,女生可能黄球。)。
师:游戏结束了,老师宣布老师获得了游戏的胜利,同意么,有什么质疑?
预设生:我们根本不知道盒子里装的什么颜色的球?
师:那我们一起验证一下,通过验证,我们发现3号盒子里面的球都是白色,1号盒子中的球都是白色,所以我们能确定摸出球的颜色,这时候我们可以用一定或者不可能来描述它的结果。(板书:一定不可能)。2号盒子中既有黄球,又有白球,所以我们不能确定摸出球的结果,这时候我们就应该用可能出现什么情况来判断它。(板书:可能)。
师小结:因此事物发生的可能性我们可以用一定,不可能以及可能三种情况来判断它。
3.走出游戏,走进生活。
师:除了游戏中,我们的.生活以及大自然中也蕴含着许多与可能性相关的问题,大家跟老师一起看一看。(出示图片)。
师:大家知道太阳从天空中的哪边升起时来是确定的么?
预设生:太阳一定从东边升起来,不可能从其他地方升起来。
师:一年有几个季节?一年有几个月?一个星期有几天?
预设生:一年一定有4个季节,一年一定有12个月,一个星期一定有7天。
师:今天下雨么?那三天后会不会下雨这个事情能确定么?
预设生:今天不下雨,三天后可能会下雨。
师总结:因此对于确定的事情我们就用一定或者不可能来描述,但是对于天气我们谁都不能很准确的说三天后会下雨还是下雪,亦或者是晴天,因此对于不确定的事情我们就用可能来描述。
4.巩固练习,深化提高。
师:通过前面的学习,同学们已经能很准确的判断游戏以及生活中发生的可能性,并且知道不确定事件发生的可能性有大有小,下面你们能通过本节课学习的知识根据老师的想法和要求自己设计一个转盘游戏么,互相交流讨论,合作完成。
(老师选取几个有特点的作品和同学互相交流讨论)。
5.课堂小结。
这节课你学到了什么新的知识?有什么收获和疑问呢?
师总结:生活中处处有数学,希望大家将学到的数学知识应用到生活实际中去,使我们的数学学习变得更加有意义。
6.作业布置。
将本文的word文档下载到电脑,方便收藏和打印。
精选可能性教学设计人教版(通用16篇)篇七
《可能性》是五年级上册数学里的统计与可能性的内容,是一节实践活动课。是我在本学期“金烛杯”活动的参赛课。现代教学理论认为:数学教学应从学习者的生活经验和已有知识的背景出发,提供给学生充分进行数学实践活动和交流的机会,使他们真正理解和掌握数学知识、思想方法,同时,获得广泛的数学活动经验。在数学教学中,必须重视学生的实践活动,充分发挥学生的主体性让学生亲身经历数学过程,感受数学的力量,促进数学的学习。本课依托新课程理念,注重为学生创设生活情景让学生从体验中学习,在体验中自我建构新知,并从中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,我的设想是希望课堂上自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些规律。这节课主要是学生通过动手实践、自主探索、合作交流等方式学习数学。根据学生的特点和教材实际,让学生在猜一猜、想一想、试一试、说一说等情景中玩数学、学数学,亲身体验知识的形成过程。
实际上整节课只设计了一个与学生生活相关的情景:学校在月底要召开秋季趣味运动会了,为了这次运动会的成功举办,老师们正在认真地设计各种游戏规则,而学生们正在积极地投入到各种比赛活动的练习中,运动会上有各种比赛项目实际上就是学生的学习内容或练习,这样设计层次清楚,思路清析,环节紧凑,便于教师组织教学,学生也感觉到今天的学习好像是在开“运动会”,在运动会中动脑学习一系列的数学内容,这样设计,联系了生活实际,让学生感受到数学就在自己的身边,体会到学习数学的价值,激发了学生学习数学的积极性。
在设计与讲课中,将教材中的“做一做”与练习中的3道题组合成了两道练习,置身于两个情境中“下跳棋”和“老鹰捉小鸡”,引起学生的认知冲突,通过对比,发现必须平均分转盘,必须采用正方体,保证每个面的大小是一样的,才能使游戏公平,这样做突破了教学难点。
在足球赛活动中创设了游戏情境,让学生主动参与做数学实验抛硬币,每组抛40次,观察抛硬币的结果,发现正面朝上或反面朝上的次数都很接近总次数的二分之一,通过“猜想”,如果继续抛下去会出现什么情况?引起学生的好奇心,观察历史上的科学家做的抛硬币的统计表,发现抛得次数越多,正面朝上的次数就越接近反面朝上的次数,让学生亲历了数学知识的形成过程,在与他人的合作过程中,增强互相帮助,团结协作的精神,同时感受到科学家持之以恒和不畏难的精神。在其他活动项目中,我也注重尽量让学生自己发现,让学生说,突出学生的主体地位。
本节课要让学生理解只有做到可能性相等,游戏才公平,在教学中,着重强调:这样公平吗?为什么?培养了学生公正、公平的意识,同时结合摸球游戏联系生活中的中奖,理解摸奖游戏对于参与者来说是不公平的,教育学生不要参加摸奖,促进学生正直人格的形成。
课讲完了,突然没有了那种紧张和激动,心理上是一种轻松和一丝淡淡的遗憾。------心里总是想着这节课存在的不足:
跳棋比赛中应设计成学生喜欢玩的电脑游戏“飞行棋”的形式,在课堂上真正让学生玩一次,由理论到实践,全班学生分为不同的三个队,由队代表来参与到活动,这样既培养了学生的集体主义精神,又能够使课堂气氛异常活跃,提高学生的学习数学的兴趣。
通过讲课发现自己在这次比赛中存在基本功不足的问题,激励性语言较少,课堂上心里紧张,不能灵活运用教学语言组织教学,缺乏一种亲切、自然、清析流畅的感觉;课中语言点拔不到位(抛硬币实验中出现正面朝上的次数与总次数之间有什么关系),导致在这一环节上用了较多时间引导点拔;还有是对学生出现错误状况后反应不够敏感(黑球个数是2,蓝球是20,黑球出现的可能性不是十分之一)。
设计丰富的教学活动,为学生提供探索与交流的时间和空间。这节课我安排了这样几个层次的活动,第一个活动是摸球,先让学生预测摸出的球一定是黄色吗?并用“一定”、“不可能”“可能”来描述摸出的结果,然后让学生亲自摸一摸,体验事件发生的确定性和不确定性,并注重对不确定性和可能性的直观感受。第二个活动是说一说,出示袋子里已装好的球,让学生说一说袋子里任意摸出一个球会是什么样的情况,使学生进一步感知事情发生的可能性和不可能性。第三个活动是抛硬币,让学生猜一猜朝上的一面是正面还是反面,切实感受事情发生的可能性。第四个活动是根据要求往口袋里放球,老师先让学生试着判断“要想达到预期结果,每次口袋里应该放什么颜色的球”。再让学生实践操作体验各自的想法。
通过这样的四次活动,使学生真切的感受到,有些事件的发生是确定的,有些事件的发生是不确定的,因而产生对事件发生的可能性的初步认识。注重思维拓展,体验成功。在练习设计中,通过课件中准备的身边的一些现象,可以开拓学生的思维,促进知识的迁移运用,使学生在“做一做”中进一步体验生活中的确定和不确定事件。培养了学生倾听意见,汲取经验和相互交流的能力。让学生体验到成功的乐趣,更增添了学好数学的信心。
精选可能性教学设计人教版(通用16篇)篇八
1、使学生联系分数的意义,初步掌握用分数表示具体数量中简单事件发生的可能性的方法。会用分数表示可能性的大小,进一步加深对可能性大小的认识。
2、在理解用分数表示可能性大小的意义中体会统计概率的随机现象,感受到试验的次数越多频率越接近概率。
3、使学生在学习用分数表示大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与学习数学的兴趣。
理解并掌握用分数表示可能性大小的方法。
理解用分数表示可能性大小的意义。(这个地方我的意思是理解用分数表示可能性的大小和用分数表示他的事物的大小是不一样的。)。
一、在情境中,体会用分数表示可能性大小的必要性。
师直接出示书中的情景:依次出示书中的五个盒子(1)两个红球(2)两个白球(3)一个红一个白(4)三个白5个红(5)5个红3个白(这个地方把教材的数字稍作了改动,主要是为了后面的实验更有利于学生发现,试验次数越多频率越接近概率。)。
问题:分别从这些盒子中任意摸出一个球,说一说从不同的盒子里摸出白球的可能性。
预设:学生可能会。
1、利用学过的不可能、一定、可能性相等、可能性小、可能性比较大来回答。
2、也可能直接用分数来回答。
师根据不同的情况作不同的导入。
1、可能性大有多大呢?具体大到什么程度呢?就向说你已经很大了,到底有多大呢?你需要告诉人家你今年11了。一样可能性的大小也可以用一个数来表示,这就是我们这节课重点要来研究的问题。板书:用数来表示可能性的大小。
2、这位同学不但知道了摸到白球的可能性有大有小,还能用一个数来具体表示可能性的到底有多大,那么他说的有没有道理呢?这就是这节课我们要来重点研究的问题。板书:用数来表示可能性的大小。
设计意图:给学生独立思考的空间,学生根据学过的可能性知识或者结合自己的生活经验来解答,在解答的过程中了解学生学习新知的起点:或者直接用不可能、一定、可能等语言来表达;或者直接用数据分数来表达。教师及时地调整教学的策略。另这个地方同时使学生体会到进一步学习用分数表示可能性大小的必要性。用语言来表达可能性有局限性,需要进一步学习把可能性的语言转化为数据来表示。
二、会用分数表示可能性的大小。
1、理解不可能事件用数据0来表示。
师:不可能摸到白球我们可以用几来表示呢?你同意吗?为什么?
2、一定能摸到白球用数据1来表示。
设计意图:先处理不可能和一定两个确定的事件用数据如何表示的目的是。
1、通过这种描述语言转化为数据表示的过程,为后续用分数表示可能性作了铺垫。
2、初步感受到,不确定可能性事件用分数表示的范围在0—1之间。
3、用二分之一表示等可能性。
师:红、白球各一个摸到白球的可能性占多少呢?为什么呢?
设计意图:从最简单的事件入手理解用分数表示可能性大小的方法。
如果我再往里放一个红球,这个时候摸到白球的可能性又是多少呢?
(及时巩固练习用分数表示可能性的方法)。
师:为什么?那摸到红球的可能性是多少呢?你是怎么想的?
预设:1、观察知道红球占三分之二2、推理知道白球占三分之一红球就是三分之二。
设计意图:理解三分之一加三分之二等与1。
4、你能自己用一个数来表示后两个盒子摸到白球的可能性的大小吗?
5、那可能性最大是多少?最小呢?也就是说可能性总是在0—1之间发生变化。
三、体会概率现象中的随机性。
摸到白球的可能性是8分之3,是不是摸8次球就一定能摸到3次白球呢?肯定有说是有说不是的。这时候在孩子们需要试验的需求上进行试验。讲好试验的要求。
1、同桌合作一个摸一个做好记录。我发给他们记录的表。
2、每人摸四次,每次摸一个,在放回盒中摇匀。
全班交流。
师板书学生的数据:看到这些数据你有什么想法?
是我们的推理错了吗?引导学生把班级的实验数据相加感受次数越多越近概率。
设计意图:用分数表示可能性大小的内容属于统计与概率的领域。主要的特性应该是随机性,如何培养孩子的随机意识?我通过了让学生亲自试验来感受它的随机性,发现试验的.结果和我们推理的不一样。进一步反思追问为什么?逐步理解试验次数越多,频率就越接近概率。
师:通过实验和讨论现在你能解释一下8分之3表示什么了吗?
设计意图:在试验与反思过后再来理解用分数表示可能性大小的意义。明确和用分数表示可能性的大小和用分数表示其他事物的大小是不一样的,它是不确定的。
师:既然不确定那我们用分数表示可能性的大小有什么价值呢?过渡到下一个环节。
四、联系生活实际,体现用分数表示可能性的价值。
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
设计意图:体会学习用分数表示可能性的价值。
五、总结。
精选可能性教学设计人教版(通用16篇)篇九
“可能性”这一教学内容,属于统计与概率范畴。人教版小学数学教材分两个阶段进行教学,学生在三年级上册已经初步接触过,但只是局限在让学生初步体验有些事件的发生是确定的,有些则是不确定的以及影响可能性的直观因素。现在我们再次学习可能性,是在三年级的基础上加以深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,联系实际情况进行逆向推理,掌握影响可能性的因素。教材在编排上围绕可能性这一知识主轴,以学生熟悉的游戏活动展开教学,使学生在积极参与中直观感受可能性与因素的相互转化。
1、学生在三年级上册已经初步体验事件发生的确定性和不确定性,会用“可能”“一定”“不可能”等词语描述事件发生的可能性,为今天学习可能性从定向到定量的过渡奠定了基础。
2、五年级的学生已掌握了分数的初步认识,能够初步利用生活中的经验,对生活中的常见现象发生的可能性进行正确的分析和判断。但由于学生概括能力较弱,推理能力还有待不断发展,很大程度上还需要依赖具体形象的经验材料来理解抽象逻辑关系。
基于对以上教材的理解和教学内容的安排,结合课程标准的要求,我从“知识与技能、过程与方法、情感态度与价值观”三个维度确定如下目标:
1、知识目标:在游戏活动中,体验事件发生的等可能性与面积大小和数量多少的关系,逆向推理数量与可能性大小关系。
2、能力目标:让学生在观察、思考、讨论、交流中探索新知,促进学生形成良好的逻辑思维能力。
3、情感目标:通过试验活动,感受可能性在生活中的应用。从而感受数学的应用价值及魅力,激发学生学好数学的信心、爱数学的情感。
教学重点:面积和数量对可能性大小的影响,数量与可能性的逆向认知。
教学难点:正确地分析事件发生的所有可能性,解决实际问题。
本课主要采用师生互动和小组合作学习的方式,让学生在观察、实验、猜测、验证、推理与交流的数学活动中亲自实践体验,直观感受事件发生的可能性,自主探究面积和数量对可能性大小的影响,数量与可能性的逆向认知。
多媒体课件一份、一个透明盒子、4支彩色粉笔和4支白色粉笔、一个黑袋、实验记录表。
(一)情境导入。
1、三张卡片分别写有唱歌、跳舞、朗诵,进行抽签。问题一:你可能抽到什么卡片?得出事件发生的三种情况:一定;可能;不可能。
2、课件出示计情景题:我们班在国庆前举行一次抽奖活动:一等奖奖励精美笔记本一本,二等奖奖励黑笔一支,三等奖奖励作业本一本。现在老师有一个大转盘(课件展示),让学生直观的了解到可能性与面积有关。
(二)实践活动,合作探究。
1、小组合作体验可能性的大小与数量有关——教学例2。
教师:可能性的大小除了和它所占的面积的大小有关以外,还有没有其他的因素也能决定可能性的大小呢?(课件出示例2)同学们,小明他们在做什么?(课件出示题干)请你帮小明猜一猜:从中任意摸出一支粉笔会有哪几种可能的结果?引导学生说出:可能会抽到红色粉笔,也可能会抽到白色粉笔,也就是说两种均有可能被抽到。教师追问:那么抽出红色的可能性与白色的可能性哪一个大?学生猜测:抽到红色的可能性大。
教师:是不是这样的呢?我们亲自来摸一摸。小组合作的要求(出示课件):把5只粉笔放入透明盒子,闭着眼睛摸出一支做好记录后把粉笔放回,和好后下一个再摸,要求每人摸一次,记录好摸出的数据填入表格中。
教师:试验的结果和你的猜想一样吗?观察上表,你发现了什么?摸到红色粉笔的'可能性与摸到白色可能性哪一个大?引导学生回答:摸到红色粉笔的次数比摸到白色的次数要多,也就是说摸到彩色的可能性比摸到白色的可能性要大。
引导学生回答出教师板书:可能性的大小与它在总数中所占的数量的多少有关。
2、巩固知识,提升能力——例3。
用黑布把盒子盖上,先不告诉学生你面的粉笔情况(4白1彩),先按照上面的情况摸,从结果去分析数量。让学生逆向的去推理,得出可能性的大小与它在总数中所占的数量的多少有关,进一步理解数量与可能性的关系,提升学生的逻辑推理能力。
p47:2p48:69。
可能性。
事件发生:
1、可能。
2、不可能。
3、一定。
可能性的大小和它所占的面积的大小有关,可能性的大小与它在总数中所占的数量的多少有关。
精选可能性教学设计人教版(通用16篇)篇十
单元编写意图。
本单元教材安排了一个摸球游戏,盒内放了9个白球、1个黄球,先让学生想一想,摸到的球可能有哪几种,摸到哪种球的可能性大。然后再通过实验,实际摸一摸,摸20次,并记录下来,进行统计,摸到哪种球的次数多,摸到哪种球的次数少,验证自己开始的想法是否正确。当学生获得一些经验后,教材又配了一些练习,由学生进行推想。
本节课是学生在对事情发生的确定性和不确定性有了一定的认识的基础上,来进一步学习事情发生的可能性有大有小。
学生直观感受事情发生的可能性有大有小几乎不存在困难。关键是要通过结合具体情境的活动,通过猜测——试验——分析试验数据,让学生能进行初步的猜测和推理。在这个过程中,学生随机观念的培养是一个难点。学生对一些随机概率的结论会存在认识上的偏差和不理解,如认为如果前几次模的都是红球,下一次就很可能会模到黄球(即所谓的赌徒逻辑)等。这些都需要教师在教学中通过正确引导帮助学生澄清问题,形成对问题的正确认识。
摸球游戏教学目标。
1、通过“猜测—试验—分析试验数据”,经历事件发生可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。
2、在活动交流中发展合作学习的意识和能力。
教材分析与教学建议。
本节教材创设了摸球游戏的情境,盒子里放入了9个白球、1个黄球,几个学生在做摸球游戏。教材对组织这一活动,提出了三条“指导语”,活动之前先“想一想”,摸到的球有几种可能,摸到什么颜色球的可能性更大;第二步“摸一摸”,在小组内摸球,把每次的结果记录在表内;第三步“填一填”,根据记录表,统计摸到什么颜色球的次数多,摸到什么颜色球的次数少。这就是让学生经历“猜测—试验—分析试验数据”的过程。教学时,可以按这样的顺序组织活动。
盒子里放入了9个白球,1个黄球,我们来做摸球游戏。先“想一想”,摸到的可能是什么颜色的球?摸到什么颜色球的可能性大?可以在小组内猜一猜或同桌互相说一说。摸球活动:在小组内同学轮流摸球,摸出球后把颜色记录在表格里,再把球放入盒子里,摇一下。每人做20次。
统计结果。摸到红球几次,摸到白球几次。感受事件发生的不确定性,体会事件发生的可能性有大有小,完成“填一填”。
先小组交流,再全班交流,并验证一开始的猜测是否正确。
试一试(1)可能出现的结果是:白球、红球或黄球。
试一试(2)最有可能指向蓝色区域。
教材安排“试一试”,意图是让学生进一步体会到有些事件发生的可能性是不确定的,事件发生的可能性有大有小。教学时,可以让学生再次经历“猜测—试验—分析试验数据”的探索过程。先猜一猜,再做一做,最后得出结论。
学生可能会对概率的某些结论产生疑问,一些学生可能会通过做实验的方法去寻找答案,对于学生这样的做法我们应当鼓励。同时,也需要注意,实验次数很大时,只能说明某一个事件的发生有一定的规律性,如:当实验次数很大时,硬币正面朝上的次数接近二分之一,但不一定正好等于二分之一。
随机观念不是一次就能形成的,也不是一次两次的实验就能形成的,学生常见的一些错误的观点还有很多,需要我们引导他们对自己的观点进一步反思,以澄清自己的认识。如:
“我摸了很多次都是红球,这次该我摸到白球了”——球有“记忆”吗?
精选可能性教学设计人教版(通用16篇)篇十一
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
1、注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2、加强学生对中位数在统计学意义上的理解。
3、本单元内容可用4课时进行教学。
第一课时。
课题:等可能性与公平性。
教学内容:p98.主体图p.99.例1及练习二十第1—3题。
教学目的:
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2、知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3、能从事件发生的可能性出发,根据指定的要求设计游戏方案。
4、能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
教学过程:
一、情境导入。
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习。
1、学习例1,感受等可能性事件的等可能性。
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识—可能性。[板书课题]。
2、抛硬币试验。
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数。
正面朝上次数。
反面朝上次数。
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊24000111988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习。
1、p99做一做。
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、p100第2题。
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题。
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)。
试验,验证结果。
4、练习二十第1题。
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
课后反思:
我为这学生准备了大量教具,包括情境图、主题图、做一做及练习2的转盘,长方体及正方体的骰子、同学们也都准备了硬币。由于准备充分,且整节课教学环节以操作、游戏贯穿,所以学生忘我地投入到学习全过程,教学效果相当好。
精选可能性教学设计人教版(通用16篇)篇十二
1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。
2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。
3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的。
4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中。
的应用。
重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可。
能性大小。
教法:引导演示法。
学法:合作交流,实验验证法。
教学准备:课件、扑克牌等。
一、复习铺垫,迁移导入。
课件出示图片:
生:从a盒摸。
师:为什么不建议我从b盒或者c盒摸呢?
生:b盒与c盒可能摸出白球,但都不一定一次就能摸出白球。
(生独立思考,小组交流)(生可能回答b盒白球更多一些)。
师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。
二、探索新知。
(1)课件出示教材第45页情境图。
师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。
问:从中摸出一个棋子,可能是什么颜色?
生:可能是红色,也可能是蓝色。
师:摸出一个棋子,那摸出哪种颜色的可能性大呢?
学生思考,猜测。
师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!
(2)安排实验过程。
请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。
要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。
讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。
(3)交流记录结果。
师:通过实验结果,你们现在有什么想法?
学生交流、讨论。
(4)小结:取出红棋子的次数要多些,也就是取出红棋子的可能性要大一些。
(5)讨论:再取一次取出哪种颜色的可能性最大?
2、进一步证实、总结规律。
(1)提出猜想。
在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)。
(2)实验证明。
这仅仅只是同学们的猜想,还需要大家用实验来证明它。
实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。
(3)汇报实验结果。
(4)引导小结:从这些实验结果中,你发现了什么规律?
(学生独立思考,小组交流)。
教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。
3、知识总结师设疑:可能性大小与什么因素有关?
(生思考回答)。
师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。
三、巩固练习(课件出示)。
四、课堂小结学完这节课后,你们能否准确判断可能性的大小?
可能性的大小与在总数中所占数量有关。
多大。
少小。
精选可能性教学设计人教版(通用16篇)篇十三
教学内容:
教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习。
p1094。
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
p1095。
教学反思:
精选可能性教学设计人教版(通用16篇)篇十四
教学内容:
教材p107—109。
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入。
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知。
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数。
黄
红
活动汇报、
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说。
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证。
让学生初步感受到实验结果与理论概率之间的关系。
2、练习。
p107“做一做”
3、
三、巩固练习。
p1096。
[1]学生说说掷出后可能出现的结果有哪些。
[2]猜测实验后结果会有什么特点。
[3]实践、记录、统计。
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
p1097。
学生讨论完成。
教学反思:
精选可能性教学设计人教版(通用16篇)篇十五
1、让学生初步体验有些事件的发生是确定的,有些则是不确定的,能用“一定”、“不可能”、“可能”等词语描述生活中一些事情发生的可能性。
2、在观察、猜测、验证、交流的过程中,提高探究和合作的能力,培养学生的逻辑思维能力。
3、在主动参与丰富的数学活动中,获得积极的情感体验。
初步体验事件发生的可能性,能描述生活中事情发生的可能性。
一、创设情境
生:我们小组一定获胜。
生:我觉得我们小组可能获胜。
师:看来同学们都想获胜,现在我们每个小组的智慧星都是0,所以现在我们只能说你们小组可能会赢。但陈老师相信只要你们努力,你们小组就一定会获胜的。
二、自主探索
师:实际上,在日常生活当中,像这样不确定确定的事情还有很多很多,今天这节课我们就一起来研究事情发生的可能性。(板书:可能性)
学生活动(一)
师:现在我们做一个小游戏。老师这里有2个袋子,里面装了相同数量的球,我把咱班同学分成两大组,男生组和女生组。分别找表现最好的五名男生和女生来做这个游戏,每人上来摸一个球,谁摸到白球就给哪一组加一面小红旗。
(选五名男生和女生上讲台上来摸球。找一名同学上来统计男生女生成绩。结果女生摸到5个白球,男生摸到4个白球1个黄球。)
师:同学们,现在哪个组赢了?
生:女生。
师:男生不是很高兴,那你们想想是因为你们男生运气太差,还是因为袋子里有什么秘密?
生:有秘密。
师:有什么秘密,谁想来说?
生:我认为女生袋子里全是白球,男生袋子里有白球和黄球。
师:那我们一起来看看是不是像你们说的这样。
(把女生袋中的球全部倒在玻璃缸中,学生很自然发出:啊!全是白球!)
师:那女生从袋里抽出的球颜色能确定吗?
生:能。
师:一定是什么颜色的?
生:白色的。
师:那就是确定的,一定能摸出白球来。
(板书:确定:一定)
师:不可能是什么颜色?
生:黄色。
师:对啊,不可能摸到黄色的或其它颜色的球。
(板书:不可能)
师:我们再来看男生袋里的秘密。
(把男生袋中的球全部倒进玻璃缸中,学生又很自然发出了:啊!有白球也有黄球!)
师:那么男生抽到的结果确定吗?
生:不确定。
生:可能摸到白球,可能摸到黄球。
师:对啊,是不确定的,可能摸到白球,也可能摸到黄球。
(板书:不确定:可能)
师:你们说这样的比赛公平吗?
生:不公平。
师:同学们想一想男生袋中的球应该怎样装这个游戏就公平了?
生:从男生袋中拿出几个黄球放到女生袋中。
生:把男生袋中的黄球都拿出来。
师:同学们的方法都很好,你看老师这样做行吗?
(把男生玻璃缸的3个黄球拿出2个,再往玻璃缸不断加入白球。)
师:同学们,想一想,这样公平了吗?结果会摸出什么球?
生:不公平。还是有可能摸出白球,也有可能摸出黄球。
师:这个同学说的太好了。无论有多少白球,只要有黄球存在,就有可能摸出黄球。(师拿出男生袋子中的黄球。)
师:这样公平了吗?
生:公平了。
精选可能性教学设计人教版(通用16篇)篇十六
本单元主要是教学事件的不确定性和可能性,使学生初步体验现实世界中存在着的不确定性现象,并知道事件发生的可能性是大小的。本单元教材在编排上有下面几个特点。
1、选取学生熟悉的生活情境及感兴趣的活动作为教学素材,帮助学生理解数学知识。
2、设计丰富的活动,为学生提供探索与交流的时间和空间。
1、使学生初步体验有些事件的发生是确定的,有些事件是不确定的。
2、使学生能够列出简单试验所有可能发生的结果。
3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。
不确定现象是这一部分内容的一个重要研究对象,从不确定现象中去寻找规律,学生较难建立这一观念。
本单元共安排4课时。
教学内容:教材104~105页。
教学目标:
1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
2.能够列出简单实验中所有可能发生的结果。
3.培养学生学习数学的兴趣,形成良好的合作学习的态度。
教学重、难点:
体验事件发生的确定性和不确定性。
教学过程:
一、活动引入新课。
击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。
猜猜他抽中了什么签?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
二、自主探索,获取知识。
(一)教学例题1。
请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。
展示两盆中球的颜色、数量。
1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?
学生讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
2、从2号盆里任意摸一个呢?请小组讨论。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。
3、活动小结。
(二)教学例题2。
`1、生活中有许多的“可能性”
例如:……(请学生举例几个)。
2、自已阅读书本例题2。
谁理解题目意思了,给大家解释一下。
独立完成。
3、汇报、讲评。
4、练习。
108页练习二十四第一题。
三、全课总结,课外延伸。
这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
学生说完后全班交流。
教学内容:教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、小结。
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。