经过这次团队合作的项目,我对于沟通和协作能力有了更深入的认识和提升。以下是一些优秀的心得体会范文,希望对大家在写作心得体会时有所帮助和启发。
数据思维栋心得体会报告(热门13篇)篇一
数据通信是现代社会中不可或缺的一环,随着科技的不断发展,数据通信的重要性在个人和企业生活中变得越来越显著。我有幸参加了一次关于数据通信报告的学习会议,通过听取专家的讲解和参与交流,我对数据通信有了更深入的理解。本篇文章将从数据通信的定义和发展、数据通信的应用、数据通信的优势和劣势、数据通信的风险以及数据通信的未来发展五个方面,对我在这次学习会议中的心得体会进行总结。
首先,在专家的讲解下,我对数据通信有了更加准确的理解。数据通信是指通过传输媒介,将数据从一个地方发送到另一个地方的过程。随着计算机技术的发展,数据通信已经成为信息技术的一大重要组成部分。在现代社会中,我们无论是通过手机进行通话,还是通过电脑上网,都是在进行数据通信。而随着5G技术的成熟和应用,数据通信将变得更加快速和高效。
其次,数据通信在各个领域的应用广泛。在学习会议中,专家通过案例分析和实际应用场景向我们展示了数据通信在企业生产、物联网、医疗健康、智慧城市等方面的应用。例如,在企业生产中,数据通信可以通过物联网技术实现设备的自动化控制和生产过程的监控,提高生产效率和产品质量。在医疗健康领域,数据通信可以实现医疗数据的远程传输和医疗服务的远程监护,为人们提供更加便捷和高效的医疗服务。数据通信的应用已经渗透到各个领域,给我们的生活带来了极大的便利。
然而,数据通信虽然有许多优势,但也存在一些劣势和风险。在学习会议中,专家向我们指出了数据通信的安全问题和隐私问题。随着信息技术的发展,网络攻击和数据泄露等问题也随之增加。在现实生活中,我们经常听到各类网络犯罪案件,这些都直接关系到数据通信的安全问题。因此,我们在使用数据通信的同时,要加强个人信息的保护,提高安全意识。
最后,数据通信的未来发展令人充满期待。在学习会议中,专家向我们展示了许多前沿的数据通信技术和应用,如5G、物联网、边缘计算等。这些技术的成熟和应用将为数据通信带来更加广阔的发展前景。特别是在智慧城市和工业互联网等领域,数据通信将发挥越来越重要的作用。我们作为参与者和见证者,应该不断学习和了解最新的技术动态,为数据通信的发展贡献自己的力量。
综上所述,通过这次学习会议,我对数据通信的定义和应用有了更加准确的理解,同时也了解到了数据通信的优势和劣势以及风险。数据通信的未来发展令人期待,我们应该积极学习新知识,为数据通信的发展做出贡献。数据通信作为现代社会中不可或缺的一环,将为我们的生活带来更多的便利和机遇。
数据思维栋心得体会报告(热门13篇)篇二
大数据的初衷就是将一个公开、高效的政府呈现在人民眼前。你知道数据报告。
是什么吗?接下来就是本站小编为大家整理的关于数据报告心得体会,供大家阅读!
现在先谈谈我个人在数据分析的经历,最后我将会做个总结。
大学开设了两门专门讲授数据分析基础知识的课程:“概率统计”和“高等多元数据分析”。这两门选用的教材是有中国特色的国货,不仅体系完整而且重点突出,美中不足的是前后内在的逻辑性欠缺,即各知识点之间的关联性没有被阐述明白,而且在应用方面缺少系统地训练。当时,我靠着题海战术把这两门课给混过去了,现在看来是纯忽悠而已。(不过,如果当时去应聘数据分析职位肯定有戏,至少笔试可以过关)。
抱着瞻仰中国的最高科研圣地的想法,大学毕业后我奋不顾身的考取了中科院的研究生。不幸的是,虽然顶着号称是高级生物统计学的专业,我再也没有受到专业的训练,一切全凭自己摸索和研究(不过,我认为这样反而挺好,至少咱底子还是不错的,一直敏而好学)。首先,我尽全力搜集一切资料(从大学带过来的习惯),神勇地看了一段时间,某一天我突然“顿悟”,这样的学习方式是不行的,要以应用为依托才能真正学会。然后呢,好在咱的环境的研究氛围(主要是学生)还是不错滴,我又轰轰烈烈地跳入了paper的海洋,看到无数牛人用到很多牛方法,这些方法又号称解决了很多牛问题,当时那个自卑呀,无法理解这些papers。某一天,我又“顿悟”到想从papers中找到应用是不行的,你得先找到科学研究的思路才行,打个比方,这些papers其实是上锁的,你要先找到钥匙才成。幸运的是,我得到了笛卡尔先生的指导,尽管他已经仙游多年,他的“谈谈方法”为后世科研界中的被“放羊”的孤儿们指条不错的道路(虽然可能不是最好地,thebetterorbestway要到国外去寻找,现在特别佩服毅然出国的童鞋们,你们的智商至少领先俺三年)。好了,在咱不错的底子的作用下,我掌握了科研方法(其实很简单,日后我可能会为“谈谈方法”专门写篇日志)。可惜,这时留给咱的时间不多了,中科院的硕博连读是5年,这对很多童鞋们绰绰有余的,但是因本人的情商较低,被小人“陷害”,被耽搁了差不多一年。这时,我发挥了“虎”(东北话)的精神,选择了一个应用方向,终于开始了把数据分析和应用结合的旅程了。具体过程按下不表,我先是把自己掌握的数据分析方法顺次应用了,或者现成的方法不适合,或者不能很好的解决问题,当时相当的迷茫呀,难道是咱的底子出了问题。某一天,我又“顿悟”了,毛主席早就教育我们要“具体问题具体分析”,“教条主义”要不得,我应该从问题的本质入手,从本质找方法,而不是妄想从繁多的方法去套住问题的本质。好了,我辛苦了一段时间,终于解决了问题,不过,我却有些纠结了。对于数据发分析,现在我的观点就是“具体问题具体分析”,你首先要深入理解被分析的问题(领域),尽力去寻找问题的本质,然后你只需要使用些基本的方法就可以很好的解决问题了,看来“20/80法则”的幽灵无处不在呀。于是乎,咱又回到了原点,赶紧去学那些基础知识方法吧,它们是很重要滴。
这里,说了一大堆,我做过总结:首先,你要掌握扎实的基础知识,并且一定要深入理解,在自己的思维里搭建起一桥,它连接着抽象的数据分析方法和现实的应用问题;其次,你要有意识的去训练分析问题的能力;最后,你要不断的积累各方面的知识,记住没有“无源之水”、“无根之木”,良好的数据分析能力是建立在丰富的知识储备上的。
有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。
这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫和洗脑下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。
大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写。
读后感。
而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。
而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。
先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。
而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。
现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。
关于软件。
分析前期可以使用excel进行数据清洗、数据结构调整、复杂的新变量计算(包括逻辑计算);在后期呈现美观的图表时,它的制图制表功能更是无可取代的利器;但需要说明的是,excel毕竟只是办公软件,它的作用大多局限在对数据本身进行的操作,而非复杂的统计和计量分析,而且,当样本量达到“万”以上级别时,excel的运行速度有时会让人抓狂。
spss是擅长于处理截面数据的傻瓜统计软件。首先,它是专业的统计软件,对“万”甚至“十万”样本量级别的数据集都能应付自如;其次,它是统计软件而非专业的计量软件,因此它的强项在于数据清洗、描述统计、假设检验(t、f、卡方、方差齐性、正态性、信效度等检验)、多元统计分析(因子、聚类、判别、偏相关等)和一些常用的计量分析(初、中级计量教科书里提到的计量分析基本都能实现),对于复杂的、前沿的计量分析无能为力;第三,spss主要用于分析截面数据,在时序和面板数据处理方面功能了了;最后,spss兼容菜单化和编程化操作,是名副其实的傻瓜软件。
stata与eviews都是我偏好的计量软件。前者完全编程化操作,后者兼容菜单化和编程化操作;虽然两款软件都能做简单的描述统计,但是较之spss差了许多;stata与eviews都是计量软件,高级的计量分析能够在这两个软件里得到实现;stata的扩展性较好,我们可以上网找自己需要的命令文件(.ado文件),不断扩展其应用,但eviews就只能等着软件升级了;另外,对于时序数据的处理,eviews较强。
综上,各款软件有自己的强项和弱项,用什么软件取决于数据本身的属性及分析方法。excel适用于处理小样本数据,spss、stata、eviews可以处理较大的样本;excel、spss适合做数据清洗、新变量计算等分析前准备性工作,而stata、eviews在这方面较差;制图制表用excel;对截面数据进行统计分析用spss,简单的计量分析spss、stata、eviews可以实现,高级的计量分析用stata、eviews,时序分析用eviews。
关于因果性。
早期,人们通过观察原因和结果之间的表面联系进行因果推论,比如恒常会合、时间顺序。但是,人们渐渐认识到多次的共同出现和共同缺失可能是因果关系,也可能是由共同的原因或其他因素造成的。从归纳法的角度来说,如果在有a的情形下出现b,没有a的情形下就没有b,那么a很可能是b的原因,但也可能是其他未能预料到的因素在起作用,所以,在进行因果判断时应对大量的事例进行比较,以便提高判断的可靠性。
有两种解决因果问题的方案:统计的解决方案和科学的解决方案。统计的解决方案主要指运用统计和计量回归的方法对微观数据进行分析,比较受干预样本与未接受干预样本在效果指标(因变量)上的差异。需要强调的是,利用截面数据进行统计分析,不论是进行均值比较、频数分析,还是方差分析、相关分析,其结果只是干预与影响效果之间因果关系成立的必要条件而非充分条件。类似的,利用截面数据进行计量回归,所能得到的最多也只是变量间的数量关系;计量模型中哪个变量为因变量哪个变量为自变量,完全出于分析者根据其他考虑进行的预设,与计量分析结果没有关系。总之,回归并不意味着因果关系的成立,因果关系的判定或推断必须依据经过实践检验的相关理论。虽然利用截面数据进行因果判断显得勉强,但如果研究者掌握了时间序列数据,因果判断仍有可为,其中最经典的方法就是进行“格兰杰因果关系检验”。但格兰杰因果关系检验的结论也只是统计意义上的因果性,而不一定是真正的因果关系,况且格兰杰因果关系检验对数据的要求较高(多期时序数据),因此该方法对截面数据无能为力。综上所述,统计、计量分析的结果可以作为真正的因果关系的一种支持,但不能作为肯定或否定因果关系的最终根据。
科学的解决方案主要指实验法,包括随机分组实验和准实验。以实验的方法对干预的效果进行评估,可以对除干预外的其他影响因素加以控制,从而将干预实施后的效果归因为干预本身,这就解决了因果性的确认问题。
关于实验。
在随机实验中,样本被随机分成两组,一组经历处理条件(进入干预组),另一组接受控制条件(进入对照组),然后比较两组样本的效果指标均值是否有差异。随机分组使得两组样本“同质”,即“分组”、“干预”与样本的所有自身属性相互独立,从而可以通过干预结束时两个群体在效果指标上的差异来考察实验处理的净效应。随机实验设计方法能够在最大程度上保证干预组与对照组的相似性,得出的研究结论更具可靠性,更具说服力。但是这种方法也是备受争议的,一是因为它实施难度较大、成本较高;二是因为在干预的影响评估中,接受干预与否通常并不是随机发生的;第三,在社会科学研究领域,完全随机分配实验对象的做法会涉及到研究伦理和道德问题。鉴于上述原因,利用非随机数据进行的准试验设计是一个可供选择的替代方法。准实验与随机实验区分的标准是前者没有随机分配样本。
通过准实验对干预的影响效果进行评估,由于样本接受干预与否并不是随机发生的,而是人为选择的,因此对于非随机数据,不能简单的认为效果指标的差异来源于干预。在剔除干预因素后,干预组和对照组的本身还可能存在着一些影响效果指标的因素,这些因素对效果指标的作用有可能同干预对效果指标的作用相混淆。为了解决这个问题,可以运用统计或计量的方法对除干预因素外的其他可能的影响因素进行控制,或运用匹配的方法调整样本属性的不平衡性——在对照组中寻找一个除了干预因素不同之外,其他因素与干预组样本相同的对照样本与之配对——这可以保证这些影响因素和分组安排独立。
转眼间实习已去一月,之前因为工作原因需要恶补大量的专业知识并加以练习,所以一直抽不开身静下心来好好整理一下学习的成果。如今,模型的建立已经完成,剩下的就是枯燥的参数调整工作。在这之前就先对这段时间的数据处理工作得到的经验做个小总结吧。
从我个人的理解来看,数据分析工作,在绝大部分情况下的目的在于用统计学的手段揭示数据所呈现的一些有用的信息,比如事物的发展趋势和规律;又或者是去定位某种或某些现象的原因;也可以是检验某种假设是否正确(心智模型的验证)。因此,数据分析工作常常用来支持决策的制定。
现代统计学已经提供了相当丰富的数据处理手段,但统计学的局限性在于,它只是在统计的层面上解释数据所包含的信息,并不能从数据上得到原理上的结果。也就是说统计学并不能解释为什么数据是个样子,只能告诉我们数据展示给了我们什么。因此,统计学无法揭示系统性风险,这也是我们在利用统计学作为数据处理工具的时候需要注意的一点。数据挖掘也是这个道理。因为数据挖掘的原理大多也是基于统计学的理论,因此所挖掘出的信息并不一定具有普适性。所以,在决策制定上,利用统计结果+专业知识解释才是最保险的办法。然而,在很多时候,统计结果并不能用已有的知识解释其原理,而统计结果又确实展示出某种或某些稳定的趋势。为了抓住宝贵的机会,信任统计结果,仅仅依据统计分析结果来进行决策也是很普遍的事情,只不过要付出的代价便是承受系统环境的变化所带来的风险。
用于数据分析的工具很多,从最简单的office组件中的excel到专业软件r、matlab,功能从简单到复杂,可以满足各种需求。在这里只能是对我自己实际使用的感受做一个总结。
excel:这个软件大多数人应该都是比较熟悉的。excel满足了绝大部分办公制表的需求,同时也拥有相当优秀的数据处理能力。其自带的toolpak(分析工具库)和solver(规划求解加载项)可以完成基本描述统计、方差分析、统计检验、傅立叶分析、线性回归分析和线性规划求解工作。这些功能在excel中没有默认打开,需要在excel选项中手动开启。除此以外,excel也提供较为常用的统计图形绘制功能。这些功能涵盖了基本的统计分析手段,已经能够满足绝大部分数据分析工作的需求,同时也提供相当友好的操作界面,对于具备基本统计学理论的用户来说是十分容易上手的。
spss:原名statisticalpackageforthesocialscience,现在已被ibm收购,改名后仍然是叫spss,不过全称变更为statisticalproductandservicesolution。spss是一个专业的统计分析软件。除了基本的统计分析功能之外,还提供非线性回归、聚类分析(clustering)、主成份分析(pca)和基本的时序分析。spss在某种程度上可以进行简单的数据挖掘工作,比如k-means聚类,不过数据挖掘的主要工作一般都是使用其自家的clementine(现已改名为spssmodeler)完成。需要提一点的是spssmodeler的建模功能非常强大且智能化,同时还可以通过其自身的clef(clementineextensionframework)框架和java开发新的建模插件,扩展性相当好,是一个不错的商业bi方案。
r:r是一个开源的分析软件,也是分析能力不亚于spss和matlab等商业软件的轻量级(仅指其占用空间极小,功能却是重量级的)分析工具。官网地址:支持windows、linux和macos系统,对于用户来说非常方便。r和matlab都是通过命令行来进行操作,这一点和适合有编程背景或喜好的数据分析人员。r的官方包中已经自带有相当丰富的分析命令和函数以及主要的作图工具。但r最大的优点在于其超强的扩展性,可以通过下载扩展包来扩展其分析功能,并且这些扩展包也是开源的。r社区拥有一群非常热心的贡献者,这使得r的分析功能一直都很丰富。r也是我目前在工作中分析数据使用的主力工具。虽然工作中要求用matlab编程生成结果,但是实际分析的时候我基本都是用r来做的。因为在语法方面,r比matlab要更加自然一些。但是r的循环效率似乎并不是太高。
matlab:也是一个商业软件,从名称上就可以看出是为数学服务的。matlab的计算主要基于矩阵。功能上是没话说,涵盖了生物统计、信号处理、金融数据分析等一系列领域,是一个功能很强大的数学计算工具。是的,是数学计算工具,这东西的统计功能只不过是它的一部分,这东西体积也不小,吃掉我近3个g的空间。对于我来说,matlab是一个过于强大的工具,很多功能是用不上的。当然,我也才刚刚上手而已,才刚刚搞明白怎么用这个怪物做最简单的garch(1,1)模型。但毫无疑问,matlab基本上能满足各领域计算方面的需求。
数据思维栋心得体会报告(热门13篇)篇三
数据报告作为一种重要的信息呈现形式,在现代社会中发挥着越来越重要的作用。通过对数据的收集和分析,人们可以更加全面地了解现实情况,为决策提供有力的支持。近日,在参加一个关于经济发展的研讨会上,我有幸聆听了一位专家的数据报告,并对其进行了深入的思考和体悟。在这篇文章中,我将结合自己的观察和佐证,从报告内容、数据可靠性、图表呈现和报告结构四个方面谈一谈我对数据报告的心得体会。
首先,在数据报告中,报告内容的准确与否至关重要。我曾在一个研究项目中参与数据收集和整理的工作,深切体会到数据的获取并非易事。因此,我对这位专家在研讨会中呈现的数据报告给予了高度的关注。令我印象深刻的是,报告中所涉及的数据源十分齐全和全面,分析角度独到。通过对历史数据和现状的比较,专家成功地描绘出了经济形势的演变和发展趋势。这让我深深地体会到,一个好的数据报告不仅要有足够的数据支持,更要有辨别和分析的能力,将数据与相关背景相结合,形成有价值的信息。
其次,数据的可靠性是评判一个数据报告优劣的重要指标。在实验科研方面,很多研究者都十分注重数据的准确性和可信度。这次研讨会的数据报告采用了多个权威机构和独立调查的数据,有效地降低了数据误差,增加了报告的可靠性。此外,专家还通过详实的数据披露和分析方法的明确说明,让听众对数据的来源和处理过程有了更全面的认识。在今天信息泛滥的大环境下,真实可靠的数据具有不可估量的价值,数据报告必须充分考虑数据的可靠性,才能够在各个领域起到支持和引导作用。
第三,图表在数据报告中的应用十分重要。以往的数据报告常常沉浸在无尽的数字中,给人枯燥的感觉。然而,图表的出现改变了这种状况,使数据得以更加直观地表达。在专家的报告中,图表被广泛运用,通过各类直观的图表展示,使听众能够一目了然地把握到数据走势和相关信息之间的联系。尤其是对于那些不擅长数据分析的人来说,图表是非常好的辅助工具。因此,在数据报告中运用图表是十分必要和有效的,它可以提高信息的传递效果,使数据更加具有说服力和可读性。
最后,一个好的数据报告需要具有清晰的结构。在这次研讨会上,专家的报告采用了逻辑清晰和层次鲜明的结构,使听众能够循序渐进地理解报告中所涉及的内容。首先,专家引用了最新的数据和相关背景介绍,给听众提供了一个整体的情景认知;接下来,通过比较和分析的手法,将数据一一呈现并进行解读,让听众逐渐把握到重点和要领;最后,专家总结了报告的核心观点和问题,并提出了自己的建议和展望。这种严谨的结构让听众不会在报告中迷失,而能够系统地接收并理解所呈现的内容。
综上所述,数据报告作为一种重要的信息呈现形式,具有非常重要的作用。一个好的数据报告需要有准确全面的内容,数据的可信度,恰当的图表呈现以及清晰的结构。在今后的工作中,我们应该更加重视数据报告的质量,并不断提高自身的分析能力和创新思维,在利用数据报告的同时,也要注意数据的可靠性和透明度,以提高工作的效果和质量。
数据思维栋心得体会报告(热门13篇)篇四
随着信息时代的到来,大数据已经成为了我们生活和工作中不可忽视的一部分。在这个信息爆炸的时代,如何处理和处理大量的数据成为了一个迫切需要解决的问题。大数据思维作为一个新兴的概念已经开始被广泛运用,它不仅仅是一种对大数据的分析和处理技术,更是一种思维方式和方法论。在这篇文章中,我将分享我在大数据思维和技术上的体会和心得。
首先,大数据思维需要从整体的角度看问题。在处理大数据时,我们需要考虑到所有的数据源和相关因素。我们不能只关注一个特定的数据点,而是要从整体的角度来分析和解决问题。在实际应用中,我们需要使用多种技术和工具来处理大数据,例如数据挖掘、机器学习和统计分析等。通过将不同的技术和工具结合起来,我们能够更全面地了解数据背后的真相,提取有价值的信息。
其次,大数据思维需要注重数据质量和数据管理。在处理大量的数据时,数据的质量对分析结果的准确性和可靠性起着至关重要的作用。我们需要保证数据的完整性和一致性,以及正确地处理数据的缺失和异常值。此外,数据管理也是大数据思维的一个重要方面。我们需要建立完善的数据管理系统,保证数据的安全性和可用性,并合理利用数据的价值。
第三,大数据思维需要灵活适应不断变化的数据环境。随着技术的发展和社会的变化,我们所面临的数据环境也在不断变化。作为从业者,我们需要保持对最新技术和趋势的敏感度,并及时调整和改进我们的思维和技术。同时,我们也需要不断学习和更新知识,以适应不断变化的数据环境。
第四,大数据思维需要结合业务需求和实际应用。在处理大数据时,我们不能仅仅停留在技术和工具的层面,而是要将其应用到实际的业务场景中。我们需要理解业务需求并对其进行分析,然后根据分析结果来制定相应的数据处理和分析策略。在实际应用中,我们还需要和业务团队紧密合作,共同制定和实施解决方案。
最后,大数据思维需要注重数据的可视化和传播。大数据的处理和分析结果往往很复杂,不容易理解。因此,我们需要使用可视化的方法来呈现数据的分析和结果,提高用户的理解和接受度。同时,我们还需要将数据的分析和结果传播给相关的人员和团队,以便他们能够更好地理解和应用数据。
综上所述,大数据思维是一种思维方式和方法论,它不仅仅是一种对大数据的分析和处理技术。大数据思维需要从整体的角度看问题,注重数据质量和数据管理,灵活适应不断变化的数据环境,结合业务需求和实际应用,并注重数据的可视化和传播。通过不断学习和实践,我们可以更好地运用大数据思维和技术,为我们的生活和工作带来更多的便利和创新。
数据思维栋心得体会报告(热门13篇)篇五
随着信息时代的到来和科技的进步,数据分析和数据报告已经成为了各行各业中不可或缺的一部分。数据报告作为一种将大量数据经过整理、分析和解读后呈现出来的形式,能够帮助人们更好地理解问题、做出决策。下面,我将结合自己的经验和感悟,谈谈对数据报告的体会和感受。
首先,数据报告的准确性和可靠性是十分重要的。在编写数据报告时,我们需要确保所使用的数据是准确和可靠的,尽可能地避免数据的错误或偏差。只有准确和可靠的数据才能为我们提供准确的信息和可信的结论,从而帮助我们做出正确的决策。因此,对于数据的来源、采集方法和处理过程都需要进行严格的把控和验证,以确保数据的准确性和可靠性。
其次,数据报告需要具备清晰和简洁的表达方式。数据报告中的图表、图像和文字应该清晰明了,能够让读者快速地了解到所要传达的信息。同时,数据报告的内容也要精简,避免冗余和重复的信息。毕竟,在快节奏的社会中,人们往往没有太多的时间和精力去阅读冗长和复杂的报告。因此,一个简洁而又有条理的数据报告更容易被人们接受和理解。
第三,数据报告应该能够提供全面的信息。数据报告应该从多个角度、多个维度对数据进行分析,以便提供全面的信息。不同的人在不同的角度上对数据有着不同的需求和关注点,因此,给出尽可能全面的信息,能够满足不同人的需求,使得数据报告更具有包容性和适应性。通过在报告中加入不同的分析指标和视角,能够更好地满足读者的需求,使得数据报告更具有实际应用的价值。
第四,数据报告需要具备一定的解读和分析能力。数据本身是客观的,但是要将数据变为有用的信息,需要进行解读和分析。数据报告应该通过对数据的解读和分析,帮助读者更好地理解数据,挖掘数据背后的价值,为读者提供参考和建议。因此,在编写数据报告时,我们需要具备一定的专业知识和分析能力,以便对数据进行深入的解读和分析,提供有针对性的建议和决策支持。
最后,数据报告需要与读者的需求相匹配。数据报告编写的目的是为了向读者传递信息和提供决策支持。因此,在编写数据报告之前,我们需要对读者的需求和关注点进行调研,了解他们对数据的期望和需求。只有在了解读者需求的基础上,才能编写出符合读者期望的数据报告,使其更具有实际应用的价值。
综上所述,数据报告在如今的社会中扮演着举足轻重的角色。准确性和可靠性、清晰和简洁、全面和多角度、解读和分析能力、与读者需求相匹配,这些都是一个好的数据报告应该具备的特点。通过不断地学习和实践,我们可以提高自己对数据报告的编写和分析能力,更好地应对信息时代的挑战和需求。相信在不久的将来,数据报告将会在各个领域中发挥出更大的作用,为人们的工作和生活带来更多的便利和效益。
数据思维栋心得体会报告(热门13篇)篇六
数据思维是指通过收集、整理和分析数据来解决问题和做出决策的一种思考方式。在这个信息化高度发达的时代,数据已经成为了我们工作和生活中不可或缺的一部分。掌握数据思维的能力可以帮助我们更加科学地看待问题,更高效地进行决策。在我个人的学习和工作实践中,我积累了一些关于数据思维的心得和体会。
首先,数据思维需要对数据的真实性进行核实和评估。数据的真实性是进行数据分析和决策的基础。在面对大量的数据时,我们不能盲目地相信数据的准确性,而应该去查证数据的来源和采集方法。只有在确认数据真实可靠后,我们才能以数据作为支撑进行正确的分析和决策。记得有一次,在公司进行产品的市场调研时,我们收集到了一批数据,数据显示市场的需求量很大。然而,我对这些数据的真实性产生了怀疑,所以决定进行进一步的调查。通过实地访问和深入交流,我与消费者建立了联系,并亲自感受到了市场的需求。最终,我发现之前的数据并不准确,市场的需求并没有想象中那么大。这次经历让我明白了核实和评估数据真实性的重要性。
其次,数据思维需要懂得数据的表达和可视化。数据本身是无情的,如果不经过适当的处理和表达,很难为决策者传递有用的信息。在进行数据分析时,我们应该善用各种数据工具和图表来展示数据的情况。图表不仅能够更加直观地表达数据,还能够帮助我们发现其中的规律和趋势。我曾经参与了一个市场竞争分析的项目,需要分析不同产品在市场上的销量情况。我们选择了使用柱状图来展示不同产品的销量数据。通过对比不同产品的销量,我们可以清晰地看到市场上的热销产品和滞销产品。这样的数据表达方式帮助我们更好地理解市场的状况,有效地指导了后续的决策。
此外,数据思维还需要注重数据的分析和解读。数据的分析和解读是数据思维的核心能力。在进行数据分析时,我们需要善于提出问题,运用不同的分析方法来解决问题。在解读数据时,我们不应该只停留在表面的数字,而应该深入分析背后的原因和影响因素。仅仅根据表面的数字来做出决策是非常片面的,可能会导致不正确的决策结果。这在我曾经参与的一个员工绩效评估的项目中得到了充分的体现。在评估员工的绩效时,我们不能仅仅看员工的销售额,还应该考察其销售额的增长率以及销售情况背后的原因,如市场环境的变化等。只有这样,我们才能够更加全面地评估员工的绩效,提出正确的奖励和激励政策。
最后,对于数据思维来说,持续学习和实践非常重要。数据分析领域的技术和方法在不断发展和更新,我们需要时刻跟进最新的研究成果和工具。同时,我们也需要将学到的知识运用到实践中,通过实际操作来加深和巩固我们的理解。在实践中,我们可能会遇到各种各样的问题和困难,但是我们不能退缩,而是要坚持下去。只有通过持续的学习和实践,我们才能够不断提高自己的数据思维能力,更好地应对未来的挑战。
综上所述,数据思维是一种重要的思考方式,在我们的学习和工作中发挥着重要的作用。要掌握数据思维,首先要核实和评估数据的真实性,其次要善于使用数据工具和图表进行数据的表达和可视化。同时,我们也需要注重数据的分析和解读,不能只看表面的数字,要深入分析其背后的原因和影响因素。最后,持续学习和实践是提高数据思维能力的重要途径。只有通过不断地学习和实践,我们才能够更好地应用数据思维来解决问题和做出决策。
数据思维栋心得体会报告(热门13篇)篇七
第一段:引言(数据思维的重要性)。
数据思维已经成为当今社会中不可忽视的一部分,它可以帮助我们更好地理解和解决问题。随着数字时代的到来,大量的数据被生成和积累,仅仅依靠人们的主观判断和经验已经不再可行。在这样的背景下,采用数据思维来分析和处理问题,已经成为必不可少的能力之一。
数据思维的基本理念是以数据为基础,用逻辑方式解决问题。首先,需要收集和整理相关数据,对数据进行分析和挖掘,从而得到一些有用的信息。其次,在数据的基础上,使用逻辑推理和统计学原理进行分析,以发现隐藏在数据背后的规律和关联,从而得出有价值的结论。最后,结合个人的经验和背景知识,把这些结论应用到实际问题中,寻找解决方案。
数据思维广泛应用于各个领域,如商业、科学、教育等。在商业领域,通过数据分析可以了解市场需求,优化产品设计和推销策略。而在科学研究中,使用数据思维可以帮助科学家发现新的规律和解决复杂的问题。在教育方面,利用数据思维可以根据学生的自身情况和需求来制定个性化的学习计划,提高教学效果。
第四段:培养和发展数据思维的方法。
要培养和发展数据思维能力,首先需要学习和掌握相关的数学和统计学知识,以便能够理解和分析数据。其次,需要掌握一些常用的数据分析工具和技术,如Excel、Python等,以便能够对数据进行处理和分析。此外,还需要具备一定的逻辑思维和问题解决能力,能够把数据和问题联系起来,并能够从中得出有用的结论。最重要的是保持对数据的敏感度和好奇心,不断追求数据背后的真相。
第五段:结尾(数据思维对个人的意义)。
数据思维不仅仅是一种工具或知识,更是一种思维方式和习惯。通过数据思维,我们可以更加客观地看待问题,并能够基于数据作出明智的决策。在信息爆炸和虚假信息泛滥的时代,数据思维不仅能够帮助我们过滤和解读信息,还能够帮助我们理解和应对复杂的现实世界。因此,培养和发展数据思维能力,对个人来说具有重要的意义。
总结:数据思维是当今社会中不可或缺的能力之一,通过运用数据思维,我们能够更好地理解和解决问题。不仅仅是在工作中,数据思维对于个人的成长和发展也有积极的影响。通过学习和应用数据思维,我们可以更加客观地看待问题,更加理性地做出决策,并在不断变化的世界中保持适应性。因此,数据思维不仅是一种技能,更是一种思维方式和生活态度,值得我们不断探索和发展。
数据思维栋心得体会报告(热门13篇)篇八
职责:
3、支持产品功能或项目上线前的决策分析,过程跟进及效果评估;
4、独立策划并高质量完成分析专题。
5、外卖市场研究、竞品研究。
任职资格:
1、国内外主流互联网公司累计2年以上工作经验,1年以上tob业务的分析经验;
2、具有较强的商业敏感度和数据分析技能,能够运用创新且可落地的分析方法以解决复杂的商业问题。
3、熟悉常规数据分析方法,对数据分析有系统的方法论;
4、对统计知识,abtesting有深入了解;
6、良好的沟通能力,耐压力,和强大的推动力;
7、优秀的团队合作精神,乐观、诚实、勤奋、严谨。
数据思维栋心得体会报告(热门13篇)篇九
职责:
2、负责公司hadoop核心技术组件日常运维工作;。
3、负责公司大数据平台现场故障处理和排查工作;
4、研究大数据前沿技术,改进现有系统的服务和运维架构,提升系统可靠性和可运维性;
任职要求:
1、本科或以上学历,计算机、软件工程等相关专业,3年以上相关从业经验。
4、良好团队精神服务意识,沟通协调能力;
数据思维栋心得体会报告(热门13篇)篇十
近年来,“大数据”这个概念突然火爆起来,成为业界人士舌尖上滚烫的话题。所谓“大数据”,是指数据规模巨大,大到难以用我们传统信息处理技术合理撷取、管理、处理、整理。“大数据”概念是“信息”概念的3.0版,主要是对新媒体语境下信息爆炸情境的生动描述。
我们一直有这样的成见:信息是个好东西。对于人类社会而言,信息应该多多益善。这种想法是信息稀缺时代的产物。由于我们曾吃尽信息贫困和蒙昧的苦头,于是就拼命追逐信息、占有信息。我们甚至还固执地认为,占有的信息越多,就越好,越有力量。但是,在“大数据’时代,信息不再稀缺,这种成见就会受到冲击。信息的失速繁衍造成信息的严重过剩。当超载的信息逼近人们所能承受的极限值时,就会成为一种负担,我们会不堪重负。
信息的超速繁殖源自于信息技术的升级换代。以互联网为代表的新媒体技术打开了信息所罗门的瓶子,数字化的信息失速狂奔,使人类主宰信息的能力远远落在后面。美国互联网数据中心指出,互联网上的数据每两年翻一番,目前世界上的90%以上数据是近几年才产生的。,数字存储信息占全球数据量的四分之一,另外四分之三的信息都存储在报纸、胶片、黑胶唱片和盒式磁带这类媒介上。,只有7%是存储在报纸、书籍、图片等媒介上的模拟数据,其余都是数字数据。到,世界上存储的数据中,数字数据超过98%。面对数字数据的大量扩容,我们只能望洋兴叹。
“大数据”时代对人类社会的影响是全方位的。这种影响究竟有多大,我们现在还无法预料。哈佛大学定量社会学研究所主任盖瑞·金则以“一场革命”来形容大数据技术给学术、商业和政府管理等带来的变化,认为“大数据”时代会引爆一场“哥白尼式革命”:它改变的不仅仅是信息生产力,更是信息生产关系;不仅是知识生产和传播的内容,更是其生产与传播方式。
我们此前的知识生产是印刷时代的产物。它是15世纪古登堡时代的延续。印刷革命引爆了人类社会知识生产与传播的“哥白尼式革命”,它使得知识的生产和传播突破了精英、贵族的垄断,开启了知识传播的大众时代,同时,也确立了“机械复制时代”的知识生产与传播方式。与印刷时代相比,互联网新媒体开启的“大数据”时代,则是一场更为深广的革命。在“大数据”时代,信息的生产与传播往往是呈几何级数式增长、病毒式传播。以互联网为代表的媒介技术颠覆了印刷时代的知识生产与传播方式。新媒体遍地开花,打破了传统知识主体对知识生产与传播的垄断。新媒体技术改写了静态、单向、线性的知识生产格局,改变了自上而下的知识传播模式,将知识的生产与传播抛入空前的不确定之中。在“大数据”时代,我们的知识生产若再固守印刷时代的知识生产理念,沿袭此前的知识生产方式,就会被远远地甩在时代后面。
(节选自2013.2.22《文汇读书周报》,有删改)。
数据思维栋心得体会报告(热门13篇)篇十一
知乎作为一个在线问答社区,拥有庞大的用户群体和海量的知识分享。其独特之处在于,它倡导“只有实力才能说服”,每个问题的回答都有对应的数据指标衡量其质量。这种数据驱动的知识分享机制激励着用户通过提供有价值的内容来获得认可,并形成了一个信息蓬勃发展和相互影响的环境。这启示我,只有通过数据的支持和验证,我们的观点和想法才能更具说服力和可信度。
第二段:数据的挖掘与分析——知识追踪和策略优化。
通过知乎,我发现了一个强大的数据挖掘和分析的工具。在这里,我可以追踪自己感兴趣的话题和领域,并根据数据分析的结果来调整我的学习和研究策略。知乎的个性化推送和精选内容也通过数据挖掘和分析来实现,这让我深刻体会到数据的价值和意义。了解并善于利用数据,能够更好地掌握信息,做出更明智的决策。
第三段:跨学科思维的拓展——数据联系与融合。
在知乎上,用户可以通过关注和参与不同领域的问题和话题来丰富自己的学识。这种跨学科的思维方式,让我明白了数据在不同领域和学科之间的联系与融合。在阅读和学习的过程中,我经常会发现问题之间的数据相关性,进而产生更深入的思考和研究。数据思维让我终身学习,不断拓展自己的知识边界,将不同领域的数据信息互相联结,形成更全面的认知和理解。
第四段:数据的表达与沟通——清晰、简洁、有效传递信息。
在知乎上,表达和传递信息也要遵循数据思维的原则。对于表达观点和分享知识,清晰、简洁和有效才能获得更多用户的赞同和认可。通过数据思维,我学会了提炼、整理和呈现大量的信息,将其转化为易于理解和消化的形式。无论是文字、图片还是图表,数据思维都能帮助我更好地传递信息,使信息更具说服力和可视性。
第五段:链接世界和未来的桥梁——数据更新与创新。
数据思维在知乎上不仅帮助我学习和思考,更让我认识到其与世界和未来的紧密联系。数据的更新和创新成为了推动社会和科技进步的重要力量。通过知乎,我能了解到各行各业的前沿动态和创新突破,而对数据思维的掌握,能更好地理解和应用这些新数据,为自身成长和社会进步做出贡献。
结语:知乎是一个拥有强大数据支持的知识分享平台,也是我们学习和探索数据思维的绝佳场所。通过与知乎的互动和参与,我深刻认识到了数据思维的价值和重要性。在未来的学习与工作中,我将继续发展数据思维,不断探索和应用数据,为自己和社会创造更大的价值。同时,我也希望更多人能够认识和应用数据思维,在信息时代中更好地适应和发展。
数据思维栋心得体会报告(热门13篇)篇十二
近年来,数据思维在各行各业中的应用越来越被重视。作为一种从大量数据中提取和分析有价值信息的能力,数据思维已经成为了当今社会中不可或缺的一部分。而在我自身的学习和实践中,我不仅感受到了数据思维的强大影响力,也深刻体会到了它给我们带来的帮助和启示。
首先,数据思维教会了我如何更加客观地看待问题。在过去,主观臆断和经验判断往往主导着我们的思考方式。然而,数据思维的出现改变了这一局面。通过数据分析,我们可以基于真实的事实来做出决策,避免了因主观因素而产生的盲目行动。数据思维告诉我们,数据是客观存在的,它们会准确地反映事物的本质和规律。只有通过数据思维,我们才能更加全面、科学地认识问题本质,做出更加准确的判断。
其次,数据思维能够帮助我们发现问题和解决问题。通过对大量数据的收集、整理和分析,我们可以发现问题的存在,并找出问题的根源。而这也为我们提供了解决问题的线索。举个例子来说,对于一款产品而言,当我们发现用户流失率较高时,可以通过数据分析找出导致用户流失的原因,进而采取相应的措施改善产品。数据思维的运用,不仅能帮助我们发现问题,更重要的是它能够提供解决问题的方法和方向。
此外,数据思维的另一个重要作用是帮助我们做出正确的决策。当我们面临复杂的决策时,往往需要综合各种因素来进行权衡。而数据思维在这方面可以提供有力的支持。通过对相关数据的分析,我们可以得出准确的结论,并对各种可能的结果进行预测和评估。基于这些数据,我们能够更加全面、客观地了解决策的风险与收益,并最终做出更加合理和明智的决策。
最后,数据思维还让我明白了一个道理,那就是数据的质量至关重要。数据的质量直接影响到分析和决策的准确性和可靠性。因此,在进行数据分析时,我们必须确保数据的真实性和完整性。数据思维要求我们善于挖掘数据中隐藏的价值,而这需要我们具备筛选和验证数据的能力。毫无疑问,数据分析可以提供很多有用的信息,但我们需要注意的是,我们所获得的信息只是在一定条件下的不完全真实描述。对于数据的正确理解和解读,是数据思维能否发挥作用的重要前提。
综上所述,数据思维在现代社会中的应用已经渗透到各行各业,它不仅帮助我们更加客观地看待问题,发现和解决问题,还能帮助我们做出正确的决策。通过数据思维的训练和实践,我深刻体会到了数据思维的价值和重要性。在未来的学习和工作中,我将继续努力提升自己的数据思维能力,将其运用到实际工作中,不断创新和进步。
数据思维栋心得体会报告(热门13篇)篇十三
也许有人会问我,“许向前,你好好一个租赁分公司的总工不当,跑到项目上当一名专业工程师,你后悔吗?”
首先是负责了贵安新区、贵安联通等项目安全文明施工标准化产品的设计和加工安装管理工作,绘了大量的效果图、组装式加工制作尺寸图等。其次是为分公司组建了喷塑烤漆房成套设备,在我的努力下,终于让租赁分公司结束了半年多来,生产安全防护产品一直靠委外喷塑烤漆的情形。再就是开启了分公司防护产品钢材等大规模材料在网上采购的新局面。并且,还指导和安排了分公司设备管理部起重机械的安全技术管理工作。
刚一调到这个项目,我总对经理等人说,“真的有点不好意思,把我调到这里来管机械,而这里并没有机械,只有几台挖掘机,我能否把工地临时用电也管起来?”领导给了我这个机会,我就边学边完成了我自己的第一个《临时用电施工组织设计》的编制。
这个项目是我今年工作得最充实的项目,应当说,在这里,我对塔吊、施工电梯很强的管理能力特别是现场抢修处理能力得到了充分的展现,为项目抢工期提供了有力的垂直运输保障。
8月14日刚来到中铁逸都项目时,公司陈思俊副总经理在抢工期动员会上,专门跟我讲了垂直运输机械的在保证工期方面的重要性。此项目12月28日就要交房,工期相当紧。陈总对我说,“你的责任不轻,一定要保证5台塔吊和9台施工电梯高效、安全使用,并做到故障少、故障能及时快速修复。”
在这工地我遇到了一个很棘手的问题:一是,此14台机械全部是从外面私人老板处租来的,关系十分复杂,此老板总拿项目欠他钱来作借口,故意拖延机械的故障维修或者大部分根本就不来修。二是,大部分设备的本质安全状况相当差,安全保护装置严重不齐全,带病作业现象严重。三是,操作司机半数以上没有操作证。四是,机械几乎每天都要加晚班,运转时间相当长,根本容不得你长时间停下来维修!
我是从以下几方面努力,保证了机械安全、高效使用,并安全顺利拆除退场完毕。
(一)亲自动手,强化塔吊和施工电梯的本质安全。
我认为,起重机械本质安全至关重要,它而且是最好操作,最易见成效的,它是机械安全的最有效的保障。机械不能做到本质安全,其它方面做得再好,花再多功夫,都难真正防止事故发生。因为其它方面主要是人的不安全行为,而人的不安全行为通常只能通过诸如安全教育、制度约束、技能培训、人选把关等方面来着手,但人始终是带有偶然性、不可预见性的。
首先,我亲自加强安全检查及故障排除。我每天都要巡视一下施工电梯,电梯再忙,我至少每天都要在笼子里仔细观察一下笼子的各个滚轮、压轮、齿轮、传动机构总成板的销轴有无松动退出——因为这样也不会耽误机械使用时间。然后,每隔三天,就要对每台电梯运行上去全面检查一遍。每周对每台塔吊检查一遍。在检查中,我发现了许多安全隐患,有的隐患是相当严重的。比如:48栋2单元电梯右笼,压轮都掉了一个,电梯居然还在运行,我发现立即叫停,为防止民工乱动,我还亲自把电源线拆除了,因为整个梯笼的几个小齿轮与齿条都因为压轮掉了而发生分离了!再继续使用,很可能随时发生梯笼坠落的严重事故!
其次,我自己动手,修复完善多台塔吊和电梯的安全保护装置。这些私人老板的观念是“只要能用就行,一切安全保护装置都是要不要无所谓。”大多数电梯、塔吊无总起动按钮(有的是被短接;而有的是根本就没有设置这个总起控制回路——这样的产品居然也“准入”了?)、无紧急停止按钮、无断相与相序保护继电器。(有的或许是上一个工地就坏了,他们就短接起来了使用,等于没有相序保护)——我一边修换一边跟工人讲解:相序保护器一定不能少,没有它,工地停电了后,用发电机发电时,常会有送电反相了的现象发生,而反相了,正常应当是无法起动总起的,但相充保护器被短接后,电梯就会反向运行,司机就会把向下当作向上开,而这是所有的上限位、下限位都会失效!电梯冲顶的危险就增加很多了!
自己维修机械与电气控制故障。
通知出租方送来后,我亲自提着很重的推动器爬到塔吊上修换;比如51栋电梯压轮坏了,我立即骑车去世纪城买来更换上去。
有一次,出租方故意把49栋塔吊电气控制线路交换接错,然后说“是plc电脑板坏了,起至少要10天才能修好”——这塔吊老板因为项目欠他一两个月租金,就出如此狠招。我毫不犹豫爬上塔吊亲自去检修(因为领导们都已经多次打电话通知出租方来修,却被故意拖延。)发现了有四根控制线是明显不符合常理的错误接法,我将其调换过来,塔吊无法回转的故障立即完全恢复正常了!后来,塔吊老板也承认了是他安排人故障把线路调换错的!
(二)充分利用微信群的曝光效果,配合罚款函等措施,把人员管理好。
比如,我检查出49栋塔吊钢丝绳断丝严重,打了两次电话还不见把钢丝绳买来,我就出了一个罚款警告函,签字盖项目章后,发给出租方,第二天终于来人换钢丝绳了。又如,电梯拆除的承包人,(同时又是司机承包者),在拆除51栋电梯时,不戴安全帽,不系安全带,并且把我亲自制作的极限开关笼顶紧急拉线故意扯下不用。我开一罚款警告单,发到微信群里,后来几台电梯拆除违章现象改正过来了。同样,高处作业吊篮老板,我也是开一个罚单在微信群里曝光警告他,后来的一两百台吊篮配重块保险绳全部穿好了。
20xx年是我工作了二十一年以来调动得最多的一年,从任租赁分公司总工一职转变到一个项目上的机械管理员,内心难免有些失落感,但不管怎么样,我只要做到问心无愧,尽职尽责做好我的工作,也就无愿无悔。
(三)全过程监管拆除现场,保证了14台起重机械安全顺利并快速拆除出场。
拆除14台起重机械,都是我全过程坚守在现场直至拆除装车出场完毕,没有一台漏过。在安全技术交底方面,我都要求现场签字并拍照。每台拆除,我都帮他们摘钩。这些私人老板,48栋二单元,拆除电梯大多数都只有两个人,我就无偿帮他们拆除附着,叫安质部另一个帮我在地面看管安全。因为当时的工期相当紧!项目总工为了排时间表,费尽了心血,每台施工电梯务必一天拆除完毕并装车拉走。否则就会延误后面的工序。
有一台电梯头天下午没拆除完,我就把电源线拆除下来,防止晚上有人乱开动电梯,因为已经拆除了一半了,这时没有无齿节、没有上限位等,如果哪个“不怕死的”晚上私自开动电梯,很容易发生冲顶坠落事故!因为他们还以为是30层高呢!哪知已经拆除到只有50多米高了!
每台塔吊拆除完后,裙楼楼板上剩下现一个“大洞”,我都亲自搬钢管、架板盖好,防止有人不小心掉下。拆除中,百分之九十以上的摘钩都是我无偿帮他们摘的。我为了什么?还不是为了让塔吊快点出场,吊篮好进行安装作业,因为工期太紧了。拆除中,遇到各种情况,我都快速及时处理,为拆除退场加快了速度。
总之,我就是从上述三方面着手,尽职尽责地管好了中铁逸都项目的14台起重机械,没有为项目紧张地抢工期拖后腿。并且,这些施工电梯的安装方案等备案资料都不齐全,有的连安装方案都没有,我都把这些资料补齐全了,并交给安质部长完成了施工电梯的备案登记工作。
在中铁逸都项目做得不足应当改进之处,一是,我没有对司机、指挥进行书面的安全教育,没有要求司机签字;二是公司要求的周检记录资料我没有及时填报;三是台班运转记录没有要求司机认真填写;四是施工电梯的防坠安全器台帐登记了,但是有几台已经过超过了检验期限,我没有强制要求出租方更换。