2023年变量与函数教案 对数函数教学反思(模板9篇)

时间:2024-11-12 作者:紫薇儿

作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么我们该如何写一篇较为完美的教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!

变量与函数教案篇一

本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移及类比的学习方法进行本节课的设计。

首先,复习有关指数函数知识及简单运算,通过创设文物考古的情境,估算出出土文物或古遗址的年代,引入对数函数的概念。一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等。性质的应用的设计我采用了求定义域及比较大小两个例题及练习,学生完成得还不错。最后用了几分钟总结本堂课所学知识点。

本堂课有两个亮点。第一,借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高了学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,增强教学内容的表现形式,在贯彻教学的直观性原则上发挥其独特的优势。第二,由图形变化特征引导学生自己总结出对数函数的性质。使学生积极思维、主动获取知识,从而养成良好的学习方法。

并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。从课堂效果和学生的作业看来,我认为本堂课还存在着以下两个精品论文参考文献不足之处。第一,内容多,讲得太快,由于大部分学生数学基础较差,理解能力,运算能力,思维能力不高,课堂上应多给学生缓冲的时间。

比如,在例题讲解的环节,时间上还应多给予学生独立思考的时间。本堂课不应该一节课讲完,应分为两节课来讲,这样才能使课堂简洁。教学语言要更简练着实,教学中应充分挖掘教材内在的魅力,通过生动的比喻,夸张等方法打动学生。有句广告词说:“简约而不简单。”简简单单教数学,实实在在学数学是新课程,新时代对数学课堂教学本质回归的热切期盼。努力让课堂化繁为简,以小见大,以少胜多,充分发挥学生的主体性,促进师生和谐流畅的交流。第二,教学中手势动作不够丰富。如果一堂课教师只仅仅靠单一的语言交流而没有其他辅助的交流,学生听课就一定会象听讲座,听理论培训一样感觉,课堂的气氛就显得死板而毫无生气,更不能很好地调动学生的主观能动性。据有关资料显示:在信息传递中,一句话只表明了说话者要表达的内容的百分之七,声音则占所要表达内容的百分之三十五,而剩下的百分之五十多的内容却来自于说话者的姿态,动作,表情等。由此可见,教师课堂上手势动作的运用对于学生获取信息就非常重要。因而,合理的运用有效的手势动作,用于教师的辅助教学,一定会收到事半功倍的效果。既让教师的语言表达更加完美准确,又能易于学生理解并接受,达到意想不到的效果。

通过认真的反思,同时参考学生提出的意见,针对学生存在的共性问题,决定举出一些例题讲解,加强学生练习力度,从练习中发现问题,利用晚自习补充讲解,直到大部分学生理解掌握为止。

变量与函数教案篇二

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图象时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图象和性质的影响,在学生画完三个图象后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图象,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

变量与函数教案篇三

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考:

(1)由具体的折纸的例子引出指数函数

设计意图:贴近学生的生活实际,便于动手操作与观察。让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。

(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。符合学生由特殊到一般的,由具体到抽象的学习认知规律。

(3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。

通过引入定义剖析辨析运用,这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下,学生作图观察探究交流概括运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。

通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。

1、情景设置,形成概念2、发现问题,深化概念。

3、深入探究图像,加深理解性质。

4、强化训练,落实掌握

5、小结归纳,拓展深化。

6、布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。

老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。

在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。

变量与函数教案篇四

二次函数对学生来讲,既是难点又是重点,通过我对这一章的教学,让我学到很多道理和教学方法。下面是我对二次函数的复习课的一些反思感受:

首先,我认为在课堂上,我对知识的掌握还是有一定的欠缺,把二次函数用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,尤其是一个难点。所以我课堂上有的习题深度没有掌握好,没有做到面向全体。

其次,本节课体现的是分层教学,而我只是在后面的比赛中简单的体现分层,对于提问中得分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。

第三,课堂上的语言不够精辟,尤其是评价性的话语很少,很单调。没有做到让学生为我的一句话而振奋,没有因为为了争得我的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。

那么针对以上几点,我从自己的角度思考,收获了以下这些:

1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光。真正做到“低起点”。

2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。

3.应该及时地,迅速的提高自己的言语水平。

一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等。

督促自己多读书,多练习,以丰富自己的语言。

4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。

俗话说“天下无难事,只怕有心人”,所以只要我认真的付出,认真的思考,我想我的明天会是美好的。

变量与函数教案篇五

从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。

变量与函数教案篇六

昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

变量与函数教案篇七

本节课的复习目标是:理解一次函数的关系式,掌握一次函数的图象及有关性质;会用待定系数法求一次函数关系式;能运用一次函数的相关知识解决简单的数学实际问题,培养学生数形结合的能力。教学重难点为一次函数关系式及图象性质的综合运用。对于本节内容我将教学案分为三部分:

一、课前复习;

二、例题精讲;

三、课堂作业。

有效的课前复习它有利于督促学生及时复习回顾本节内容,有利于教师了解学生掌握知识的情况,所以课前我先将学生的复习作业及时批阅,课上将学生作业中失误率较高的题目及时评讲,查漏补缺;课上选取典型的例题,其中考查的知识点有已知点求直线的关系式,有已知直线求点,一次函数的增减性、一次函数与方程、与不等式之间的关系,有利用数型结合的思想解题,有一次函数与坐标轴围成的图形的面积问题,也有一次函数的实际应用等等,在例题的选取上基本已将大多数知识点容纳其中,课上在学生的主动参与下,一起完成了例题的讲解,最后还剩下不到5分钟的时间一起完成课堂检测。

本节课中始终以一次函数的图象与性质为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的难点和易错点,有针对性的进行复习讲解,本课采用“教学案”的形式,实现了课下与课上相结合,学案与教案相结合,学生自主学习与教师讲解诱导相结合,让学生自主、探究、主动地学习。把思维空间留给学生,把学习主动权还给学生,把自主时间还给学生,同时“教学案”的设计注重了夯实基础,复习实行“低起点、多归纳、快反馈”的策略,注重激发全体学生学习数学的自信心,教学中也注重学生解题的准确性及表达的规范性。当然本节课也有很多有待改进的地方,比如课上老师的总结有时不及时,在讲解直线上点p使得pm+pn取得最小值时总结不够,应该将题目中的共性找出来分析,找出题目中的基本量进行分析,有利于学生遇到变式题时不至于无处下手。

总之,在本节课的教学设计时,我在明确复习课的目的的任务下,以培养学生能力,促进学生发展为指导思想,遵循复习课原则中的系统性原则和主体性原则,以学生的“学”为出发点,将“自主探究、合作交流”的学习方式贯穿于课的始终,并将评价与教师的教和学生的学有机的融为一体。我相信,在新程标准的指引下,我们的数学课堂将会越来越精彩。

变量与函数教案篇八

事物之间是存在普遍联系的,研究二元一次方程组与一次函数之间的关系应证了辨证唯物主义的这一观点.同时利用二元一次方程组解决一次函数问题也是初中阶段数学学习的一个重要内容、教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.对于教材的这一方面的使用,教师应根据自己学生的特点,选择合理的方式去让学生理解不同方法去解决同一问题。

本节课主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题、要让学生理解为什么要用二元一次方程组去求解一次函数的解析式的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解图像方法和代数方法解决问题的特点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,结合教材例题,在补充分段图形题,甚至表格题,让学生充分理解用方程的思想去解决函数问题。

根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化、在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对问题的理解水平和解决过程中的表述水平,关注的是学生对基本知识技能的掌握情况和应用二元一次方程组解决一次函数的解析式的相关问题的提高、教学中可通过学生对“做一做”的探究情况和学生对反馈练习的完成情况分析学生的认识状况和解决问题的意识和能力水平、对于学生的回答教师应给予恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能。

变量与函数教案篇九

本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性。在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择解决问题的办法。

本节课也存在一些应该深刻的反思和改进的地方。例如在探究活动中有些问题处理的有些仓促,有些问题的`指向性有些太明确,需要今后加强。另外,今后教学中还应该更多地关注学生的发展和提升。多用幽默和鼓励性的语言激励学生。

总之,本节课着力做到课堂是数学活动的场所,是师生共同成长的基地,是学生张扬自我舞台。

相关范文推荐