五年级教案是为了帮助学生更好地掌握课程知识和提高学习能力而设计的一种教学计划。下面是一些经过反复修改和实践验证的五年级教案范本,供大家分享。
北师大版五年级数学教案(模板13篇)篇一
教学目标:
知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
能力目标:培养学生动手动脑能力,以及解决实际问题的能力。
情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:
解决实际问题。
教学难点:
用方程方法解答分数除法应用题。
教学过程:
一、复习巩固,为新知作铺垫。
课件出示:
1、写出下列各题的数量关系式,判断谁是单位“1”
(1)故事书的3/5是150本。
(2)书的价钱是钢笔价钱的2/5。
(3)汽车速度是火车速度的1/2。
2、复习题:写出数量关系式,找出已知量和未知量。
操场上有27人参加活动,跳绳的是操场上参加活动总人数的2/9,跳绳的有多少人?
(1)谁是单位“1”;单位“1”是已知还是未知?
(2)写出等量关系式。
(3)找出题中的已知条件和未知条件。
(4)根据题意列式。
学生独立完成,汇报反馈。
二、导入新课。
看来同学们都能正确分析和解答分数乘法的实际问题,分数除法的实际问题怎么解答呢?这节课我们就来研究。
(一)学习新知。
1、出示情景图:从情景图中你能获得哪些信息?
生简要回答。
2、出示例题:
跳绳的有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?
3、讨论:(1)谁为单位“1”?是已知还是未知?
(2)根据那句话得到的信息?
(3)你能列出等量关系是吗?
半数:参加活动总人数-2/9=跳绳的人数。
(未知)(已知)。
4、你们有什么办法利用以前的知识解答这道题?
同桌互相说说,在练习本上做一做。
生反馈,师板书。
学生口头检验对错。
5、对比复习题和例1,这两道题有什么相同点,不同点?
(二)巩固新知。
看情景图,你还能提出问题吗?
(1)生提问题,全班解答。
(2)同桌互相提问题,写出等量关系式,列式解答。
(三)练习、巩固。
打开书,29页,试一试1,自己独立完成。
集体订正。
三、拓展延伸。
回过头来看例题,你还能用其他的方法解答吗?
(用除法计算)。
四、总结。
这节课你有什么收获?
【板书设计】。
分数除法(三)。
北师大版五年级数学教案(模板13篇)篇二
教学目标:
1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等毛生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
教学重点:探索数的奇偶性变化规律。
教具学具准备:数字卡片,盒子,奖品。
教学过程:
复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)。
活动1:数的奇偶性在生活中的应用。
(一)激趣导入。
(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况。
开、关;开、关;开、关;开、关;开、关;开、关……。
让学生数数,直观地发现第11个人按过开关后,开关是打开的。
2、增加人次,深入探究。
3、第二次汇报交流。
投影下表:
用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。
(三)巩固应用。
1、看书学习并解决小船的靠岸问题。
2、解决杯子上下翻转,杯口的朝向问题。
3、举例说说数的奇偶性还能解决哪些生活问题?
(四)活动小结。
当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。
活动2:探索奇、偶数相加的规律。
(一)有奖游戏。
1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。
2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。
3、引发思考。
4、发现规律。
学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。
5、举例验证。
6、修改游戏规则。
(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)。
(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。
(3)举例验证:奇数+偶数=奇数。
(二)总结奇、偶数相加的规律。
奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。
(三)应用规律解决问题。
1、不计算,判断下列算式的结果是奇数还是偶数。
10389+200411387+131268+1024。
全课小结:说说这节课有什么收获?
教学目标:
1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。
2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。
3、让学生在活动中体验研究方法,提高推理能力。
教学准备:一次性纸杯、硬币、课件等。
教学过程环节设计:
一、创设情境,产生认知冲突。
(愿意)。
课件出示情境图和问题。
【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。
二、分组活动,动手操作,感受奇偶性,建构数学模型。
1、活动一:
讨论:船夫将小船摆渡11次后,船在南岸还是北岸?
小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。
2、活动二:
学生动手操作,发现规律,汇报结果。
师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。
3、活动三:
讨论:加法中数的奇偶性与结果的奇偶性。
课件出示填有偶数的图形,奇数的正方形。
小组合作,完成表格(先猜一猜结果,再举例验证)。
小组汇报,全班交流。
(师板书:)。
偶数+偶数=偶数。
奇数+奇数=偶数。
偶数+奇数=奇数。
【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。
三、运用模型,解决问题。
1、判断下列算式的结果是奇数还是偶数。
10389+2004:11387+131:
268+1024:46786+25787:
6007+8997:
你手上只有一个杯子怎么办?
……(学生小组合作)。
完成后,汇报反馈。
3、数学游戏。
规则如下:用骰子掷一次,得到一个点数,以a点为起点,连续走两次,转到哪一格,那一格的奖品归你。
谁想上来参加?
……(学生玩游戏。)。
这样玩下去,能获得奖品吗?为什么?
【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
板书设计:
数的奇偶性。
偶数+偶数=偶数。
奇数+奇数=偶数。
偶数+奇数=奇数。
北师大版五年级数学教案(模板13篇)篇三
第一课时:直方图(1)。
学习目标:了解频数分布表的制作步骤。
重点、难点:频数分布表的制作。
学习过程:
问题一:下面数据是截止费尔兹奖得主获奖时的年龄:。
293935333928333531313732。
383631393238373429343832。
353633293235363739384038。
373938343340363637403138。
请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.
解:1.计算极差(最大值与最小值的差):。
2.决定组距与组数:。
3.列频数分布表:。
年龄分组划记频数。
合计。
4.画出频数分布直方图。
课堂练习:
1、光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):。
将数据适当分组,绘制频数分布直方图。
2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:。
(1)全班有名同学;。
(2)组距是,组数是;。
(3)跳绳次数在范围的同学有人,占全班同学%;(精确到0.01%)。
(4)画出适当的统计图表示上面的信息;。
(5)你怎样评价这个班的跳绳成绩?
3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.
组别次数x频数(人数)。
第1组801006。
第2组1001208。
第3组10a。
第4组140。
第5组160。
请结合图表完成下列问题.
(1)表中的a=______.
(2)请把频数直方图补充完整.
(3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.
第二课时:直方图(二)。
学习目标:能正确画出频数分布直方图和画频数折线图。
重点、难点:能正确地画出频数分布直方图。
学习过程:
解:(1)计算极差:(4)画频数分布直方图和频数折线图:
(2)决定组数和组距:
(3)列频数分布表:
平行线及平行公理。
教学建议。
1、教材分析。
(1)知识结构。
本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.
(2)重点、难点分析。
本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.
本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.
另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.
2、教法建议。
(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.
(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.
(4)平行公理及其推论。
在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.
教学设计示例。
一、教学目标。
1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.
2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.
3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.
4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.
二、学法引导。
1.教师教法:尝试法、引导法、发现法.
2.学生学法:在教师的引导下,尝试发现新知,造就成就感.
三、重点、难点及解决办法。
(-)重点。
平行公理及推论.
(二)难点。
平行线概念的理解.
(三)解决办法。
通过引导学生尝试发现新知、练习巩固的方法来解决.
四、教具学具准备。
投影仪、三角板、自制胶片.
五、师生互动活动设计。
1.通过投影片和适当问题创设情境,引入新课.
2.通过教师引导,学生积极思维,进行反馈练习,完成新授.
3.学生自己完成本课小结.
六、教学步骤。
(-)明确目标。
掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.
(二)整体感知。
以情境引出课题,以生活知识和已有的知识为基础,引导学生学习了平行公理及其推论,并以变式训练强化和巩固新知.
(三)教学过程。
创设情境,引出课题。
北师大版五年级数学教案(模板13篇)篇四
教学目标:
1.结合电影院的座位问题,经历自主探索乘数末尾有0的乘法的计算方法的过程。
2.会用简便方法计算乘数末尾有0的乘法。
3.在自主探索简便算法的过程中,体验学习的乐趣,增强学好数学的信心。
教学重点:
会用简便方法计算乘数末尾有0的乘法。
教学难点:
在自主探索简便算法的过程中,体验学习的乐趣,增强学好数学的信心。
课前准备:
把电影院的2个问题分别写在小黑板上。
教学过程:
一、问题情境。
1.师生谈话由学生最近看过什么电影,在哪个电影院看的,电影院每排有多少个座位,有多少排,引出电影院座位问题。
请几个同学介绍。
师:谁仔细观察过,你去的电影院每排大约有多少个座位?有多少排?
生发言,教师对注意观察电影院座位的学生给予表扬。
师:__同学真不错,到电影院不光是看电影,还特别注意观察电影院的座位情况。今天我们就来解决一个电影院的座位问题。
用小黑板出示问题(1)。
2.用小黑板出示问题(1),让学生读题,了解其中的信息和要解决的问题。
师:请同学们认真读题,说说从中你了解到哪些数学信息?要解决的问题是什么?
学生说电影院原来的座位情况和问题。
二、解决问题。
1.提出问题(1),师生共同列出算式,鼓励学生自主计算。
师:求原来一共有多少个座位,怎样列式呢?
学生说,教师板书:36×30=。
师:36×30,这个算式你们都会计算,用自己的方法试着算一算吧!
学生自主计算,教师巡视,了解学生的计算方法。
2.交流学生个性化的计算方法,鼓励学生大胆介绍自己的想法和计算过程。
师:谁来说一说你是怎么想的?怎么计算的?
学生可能会有以下方法。
(1)先算10排共有多少个座位。
36×10=360(个)。
360×3=1080(个)。
(2)把30看成3个十,36乘3个十等于108个十,也就是1080。所以,36×3=1080(个)。
(3)用竖式计算。
第(2)种方法如果没有出现,教师可以交流,并接着列出竖式的简便算法。
如果出现,教师就结合学生的算法介绍简便算法。
3.介绍竖式计算的简便算法。
师:36乘30,可以把30看成3个十,这样写竖式。
边说边板书。
师:计算时,先算36乘3,得108,也就是108个十,在108的前面添上一个0。
边说边完成板书。
生:这样写很简便。
用小黑板出示问题(2)。
4.教师谈话,并说明要解决的问题。然后,用小黑板出示问题(2),让学生列出算式,用口算,说一说是怎样想的。
师:谁来说一说现在这个电影院的座位情况?
生:这个电影院现在每排有40个座位,还是有30排。
师:谁来说一说怎么列式?
生:40×30。
师:口算结果是多少?
学生可能会直接说出结果1200。
师:说一说你是怎样想的。
学生可能回答。
把40看成4个十,4个十乘30等于120个十,就是1200。
先算4乘3等于12,再在12的后面添两个0,就是1200。
教师重点指导口算方法。
5.教师介绍竖式计算,边说边写出竖式。
师:整十数乘整十数,可以直接利用口诀计算。先把整十数十位上的数相乘,再在积的后面添两个0。用竖式可以这样算。
教师介绍竖式的简便算法。
三、尝试练习。
1.教师在黑板上写。
出试一试中的6道题,让学生独立计算,然后进行交流。
师:同学们刚才用不同的方法解决了电影院的座位问题,而且学会了用竖式计算乘数末尾有0的乘法。现在,请同学们计算一下黑板上的几道题,看谁算得又快又正确。
学生自主计算,请两个人到黑板上板演。64×30和99×99。
10×10不要求有竖式。
全班交流。
2.提出议一议的问题,启发学生根据三道题的乘数和积回答问题。
师:观察这几道题中乘数和积,想一想,两位数乘两位数,积最多是几位数,最少是几位数?说一说你判断的理由。
学生可能回答。
两位数乘两位数,积最多是四位数。因为99是的两位数,99×99=9801,所以两位数乘两位,积最多是四位数。
两位数乘两位数,积最小是三位数。因为10是最小的两位数,10×10=100,100是个三位数。所以,两位数乘两位数的积最小是三位数。
学生如果有困难,教师启发或参与交流。
四、课堂巩固。
1.练一练第1题。
(1)师生一起估计积是几位数。要给学生充分地表达不同想法的机会。
师:看来同学们不但学会了两位数乘两位数的计算方法,又知道积最多是几位数,最少是几位数。下面看练一练第1题,我们一起估计一下积是几位数。说一说你是怎样想的。
学生可能会出现不同说法。
如
26×40可能出现两种意见。
积最多是三位数,因为十位上的两个数2乘4等于8,不进位;。
积最多是四位数。把26看成25,40看成4个十,25乘4个十等于100个十,就是1000,所以积一定是四位数。
要给学生充分的讨论时间。
74×36,也可以有两种算法。
因为十位上的两个数7乘3等于21,要进位,所以积一定是四位数;。
因为70×30=2100,所以,70×36的积一定是比2100大的四位数。
(2)鼓励学生自己计算,检验估算的结果。
使学生了解判断积是几位数的一般方法:先看两位数十位上的数,十位上的两个数相乘超过或等于10,积一定是四位数。
师:好!现在请同学们自己计算一下,看看估计的结果对不对。
学生计算后,再总结估计积是几位数的方法:两位数乘两位数,十位上的两个数相乘进位,积一定是四位数。
2.练一练第2题,口算比赛。
师:这节课同学们表现得都非常棒,下面我们举行一个口算竞赛,看谁是咱们班的“口算能手”!
3.练一练第3题,先读题明确图意后,让学生独立解答,再交流解答问题的过程和结果。
学生回答后,自己列式计算,然后交流。
4.练一练第4题让学生先读题,弄懂题意,再计算。交流时,重点说一说是怎样判断的。
五、课堂小结。
北师大版五年级数学教案(模板13篇)篇五
1.分一分,引导感知一个数除以分数的意义。
2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。
3.引导完成28页的填一填,想一想,你发现了什么?
4.引导归纳计算方法。
设计意图:理解一个数除以分数的意义。总结归纳计算法则。
北师大版五年级数学教案(模板13篇)篇六
这节课,是在学生已有知识和经验的基础上,让学生通过收集、整理数据,选择统计图,来解决“奥运会”的问题。由于难度不大,而且非常适合现在的快乐课堂模式所以我准备大展拳脚。因此课的设计突出了“统计图”实践性比较强的特点,用学生身边的事例,促使学生在自主的探索中经历选统计图的过程。
1、紧密结合学生的实际。强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数字模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。如课的开始,展示部分奥运冠军的照片引入问题,在练习环节解决有关nba、垃圾处理、跑步、我国人口等数据问题,在展示部分投影学习成绩、空气质量、家电销售情况等内容,都与学生的生活紧密相关,促使学生积极主动的投入学习活动。
2、明确分工的合作学习。
新一轮的课程改革倡导有合作交流。“统计”知识的学习,比较适合合作学习的方式,在本课教学中,我准备组织一些“合作学习”。在归纳三种统计图的特点后,让学生对子合作做图,小组讨论选统计图来巩固知识点。
3、注重德育于教学当中。
《标准》积极强调德育和智育要相结合,在教学设计过程中我无处不在渗透着德育。如:解决奥运数据问题时强调爱国主义教育。这样,一节课下来,学生不仅学到新的知识,在思想上也得到一定的提升。
上完这堂课后,我也感觉有一些遗憾,如:由于时间仓促,未能让学生充分发表自己的看法,可以在压缩展示统计图环节中得到改进,个别环节的衔接还须进一步加强。
看着我写的以上三点,似乎什么都估计到了,结果课上成功了吗?回答是尴尬的。只有部分成功。虽然完成了教学任务,但没有达到我的要求。问题如下:
1、紧密结合学生的实际。编书时估计是奥运会的那几年编写的。现在2008已经过去2年奥运会已经冷却了,我还不思修改仍然套用奥运会模式,学生激情明显不足。至于空气质量、家电销售情况更是没有兴趣。当时一个学生一句话道破天机:要是世界杯就好了。哎!一个正在进行的世界杯就在我面前,我却不珍惜,如此怎么叫紧密结合学生的实际。
2、明确分工的合作学习。这点到做的较好,所以整堂课还显得成功,学生不仅分工合作,而且通过对比发现了不同的统计图的不同作用。但当前面的那个同学提到世界杯后,部分学生就开始议论世界杯,致使这部分环节用时过长。
3、注重德育于教学当中。由于上面时间过长,我根本就没有想起要进行德育教育。连:中国军团真不错。这样的话都没有说。
综上所述:本次课,我虽然研究了教材、教法,但根本没有仔细研究学生,他们才是课堂的主体。以此为戒,以后改进。
将本文的word文档下载到电脑,方便收藏和打印。
北师大版五年级数学教案(模板13篇)篇七
1.理解三步计算的应用题的数量关系:掌握解题思路。
2.能分步解答较容易的三步计算应用题。
(二)能力训练点。
1.培养学生类推能力、分析比较能力。
2.培养学生理解应用题数量关系的能力。
(三)德育渗透点。
渗透事物间相互联系的思想。
(四)美育渗透点。
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
二、学法引导。
指导学生运用已有经验,合作学习、讨论、试算,感知算理和计算方法。
三、重点、难点。
教学重点:理解应用题的数量关系。
教学难点:确定应用题的解题步骤。
四、教具准备。
小黑板、投影片等。
五、教学步骤。
(一)、铺垫孕伏。
1.练习:(出示口算卡片)。
56×2+5678×4—78。
168。
—17×4100—100÷5×3。
2.复习题:
读题,分析解题思路。
学生独立解答、订正。
(二)探索新知。
1.利用投影片改复习题为例5。(课件演示)。
(抓住复习和例5的联系点,设计了复习题,为学习例5做好铺垫,有利于学生思维的发展。)。
2.读题,找出已知条件和所求问题。
讨论:你认为这道题的关键句是哪一句?
(教师在“五年级栽的比四年级总数少10棵”下面画出曲线。)。
3,怎样用线段图表示题中的数量关系呢?
引导学生画线段图。
4.根据线段图和题意,讨论思考:
要想求出五年级栽树多少棵?必须先知道什么?你是根据什么这样说的?为什么?
(通过线段图,从直观到抽象,帮助学生理解算理。)。
5,通过交流汇报,确定解题思路,教师板书小标题,再让学生直接在书中填空,指定一名学生板演。
形成板书:
四年级栽树多少棵?
56×2=112(棵)。
三、四年级一共栽树多少棵?
56+112=168(棵)。
五年级栽树多少棵?
168—10=158(棵)。
答:五年级栽树158棵。
6.小结:
引导学生回顾例5的解题过程,解答这类题时应注意什么?
抓住关键句理解数量关系,依据关键句确定数量关系,确定先算什么,再算什么,最后算什么,并分步解答。
引导学生观察:在解题过程中,56这个已知条件用到了几次?分别是在求什么时候用的?通过讨论,使学生明确:解答应用题时,有的已知条件不止用一次,具体怎样用,要根据题目内容确定。
7.反馈练习:教材第19页“做一做”第1题。
同桌讨论,关键句是哪一句,再根据题意确定先求什么,再求什么,最后求确定2-3名学生汇报讨论结果。然后再让学生分步独立解答,集体订正。
(三)、巩固发展1、“做一做”第2、3题。
同桌每人选一题,互相说一下这道题的关键句是什么,应该先求什么,再求什么,最后求什么。然后独立完成。
2、练习五第1题。
先画图表示数量关系。
(四)、课堂小结。
回顾本课学习内容,指出这类应用题是三步计算应用题,还是两步。
计算的应用题。
板书课题:
进一步明确:解答此类应用题,要抓住关键语句,明确数量关系,通过分析关键语句确定的数量关系,明确解题步骤。
提示同学:有的已知条件在解题时不止用一次。
六、布置作业。
练习五第2题。
七、板书设计。
北师大版五年级数学教案(模板13篇)篇八
本节教学内容是学生在前面已经认识了长方体和正方体的面、棱和顶点特征,以及展开与折叠的基础上进行教学的。通过本节课学习可以巩固学生对前两节课内容的理解,同时为后面学习长方体的体积奠定了基础,可以更好的发展学生的空间观念。
北师大版五年级数学教案(模板13篇)篇九
1、使学生理解长方体和正方体表面积的含义,在理解的基础掌握长方体表面积的计算方法。
2、通过动手操作,合作交流。培养学生的观察能力、概括推理能力。发展学生的空间观念。
3、通过自主探究,发展学生的空间观念。调动学生学习的积极性,激发学习数学的兴趣。
北师大版五年级数学教案(模板13篇)篇十
1、完成教材第3页练一练第1题。
2、我是小小神算手。
20.4÷496.6÷4255.8÷31。
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
北师大版五年级数学教案(模板13篇)篇十一
(一)长方体表面积的意义。
1、请同学们拿出自己的长方体学具,想想刚才包装的是长方体的哪几个面里?什么叫长方体的表面积?标出“上”、“下”、“前”、“后”、“左”、“右”面。
2、观察每个面的长和宽与长方体的长、宽、高有什么关系?(同桌交流后,汇报交流)。
(二)长方体表面积的计算方法。
1、动手操作、自主探究。
那么怎样计算你的长方体盒子的表面积哪?
请同学们在小组内通过量一量、剪一剪、拼一拼、摆一摆的方法,试试求出长方体的表面积,同时把讨论的结果写在记录单上(形式不限),看哪一小组想出的方法多。
(教师对学习困难的学生进行指导)。
2、交流汇报、总结规律。
(1)哪一个小组到前面来汇报你们的研究成果?
学生汇报算式,引导观察,用什么方法计算表面积的?(对表达流畅,思维敏捷的进行鼓励)。
(2)小结长方体表面积的计算方法,根据学生的'回答并板书。
分析这几种计算表面积的方法,为什么这样算?在这几种算法中你喜欢用哪一种?与同桌说一说。
3、即时反馈、巩固新知。
(三)尝试探索正方体表面积的计算方法。
正方体的表面积应该如何计算?
讨论,指名反馈,得出正方体表面积的计算方法。
正方体的表面积=棱长×棱长×6,为什么要乘以6?
1、给棱长为0.8米的正方体木箱表面涂上油漆,涂油漆部分的面积是多少?(独立探索,再交流计算方法。)。
如果正方体木箱没有盖,涂油漆部分的面积是多少?
2、归纳小结。
计算长方体、正方体表面积的关键是什么?如何计算?
北师大版五年级数学教案(模板13篇)篇十二
(1)紫色树,紫色花,紫色花开结紫瓜,紫瓜柄上长小刺,紫瓜里面装芝麻。(打一种蔬菜)。
(2)红公鸡,绿尾巴,脑袋埋在地底下。(打一种蔬菜)。
2、大家的表现真出色,我还为同学们准备了一个大礼物,想将它送给这节课发言积极的同学,可是这个盒子不漂亮。现在我要用彩纸包装一下。(师动手包装)。
北师大版五年级数学教案(模板13篇)篇十三
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
引导学生结合自己的生活经验和已经掌握的知识先自己想一想,并且尝试计算,然后在小组内讨论交流一下想法。
2、学生交流讨论,老师巡视指导。
3、请小组选派代表汇报讨论结果,指名学生板演。
4、老师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?学生可能会将11.5元转换为115角进行计算,老师应追问:为什么要化成115角进行计算?让学生进一步明确将小数转化成整数进行计算的思想和方法。也可能有学生直接运用竖式进行计算,老师应大胆放手让学生说出自己的想法,引导出“商的小数点与被除数的小数点对齐”。
5、理解算理:师生共同探究“商的小数点为什么要与被除数的小数点对齐”。先让学生说出自己的观点,再进行引导。将11.5元平均分成5份,先将11平均分成5份,每份是2元,还剩1元,再将1元看作10角,加上5角,一共15角,平均分成5份是3角,3的单位是角,写成以元为单位的小数时,3应该写在十分位上,因而小数点在3的前面,正好与被除数的小数点对齐;或个位上的1是10个十分之一,加上十分位上的5,总共是15个十分之一,平均分成5份,每份是3个十分之一,因而小数点应在3的前面。教师视学生回答角度进行引导阐释。
6、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。
7、学生尝试计算乙商店牛奶价格,注意商的小数点与被除数的小数点对齐。