通过写心得体会,我们可以更加全面地了解自己在学习和工作中的表现,发现问题并提出解决方案。下面是一些关于心得体会的实例分享,希望能给大家提供一些思路和灵感。
实用高等数学感想体会(案例19篇)篇一
第一段:引言(120字)。
高等数学作为大学数学课程中的一门重要学科,不仅是理工科学生的必修课,更是培养学生分析解决问题能力的重要途径。在学习高等数学的过程中,我感受到了数学的美妙与魅力,同时也深刻体会到了数学学习的重要性。通过这门课程的学习,我不仅提高了自己的数学水平,更具备了解决实际问题的能力,下面将分为逻辑推理能力的提升、问题解决能力的培养、批判性思维的养成、严密的思维训练以及团队合作精神的培养五个方面,详细论述我在高等数学学习中的心得体会。
第二段:逻辑推理能力的提升(250字)。
高等数学学习需要运用各种公式定理,进行推导证明。在这个过程中,我不断锻炼了自己的逻辑推理能力。老师引导我们学会分析问题,从多个角度去思考,利用数学方法解决问题。通过数学定理的证明,我更加深入地理解了逻辑推理的重要性以及问题求解的思路。此外,在高等数学的学习过程中,我还学会了如何将复杂问题分解为简单子问题,逐步推导出一个完整的解决方案。这一过程的锻炼不仅提高了我的数学素养,还培养了我的逻辑思维能力,使我能够更好地应对其他学科的学习和实际问题的解决。
第三段:问题解决能力的培养(250字)。
高等数学学习强调实际问题的建模与求解,培养学生解决实际问题的能力。在课堂上,我亲身体验了数学在解决实际问题中的作用。通过案例分析和问题解决讨论,我学会了将抽象概念和公式与实际问题相结合,找到问题的关键点,提出有效的解决方案。此外,高等数学课程还让我了解了数学与其他学科的交叉点,从而拓宽了视野,帮助我更好地理解和解决其他学科的实际问题。
第四段:批判性思维的养成(250字)。
高等数学学习强调学生的批判性思维能力的培养。在学习过程中,我发现数学不仅有固定答案,还有多种解决路径和解释方法。通过解析问题的不同方面,从不同的角度思考,我逐渐养成了批判性思维的习惯。我开始质疑问题是否被正确解决,是否有更好的方法,这种思维方式不仅在高等数学学习中帮助我更好地理解概念和定理,还在其他学科和实际生活中使我更加理性和客观。
第五段:严密的思维训练与团队合作精神的培养(320字)。
高等数学中的复杂定理和抽象概念要求学生掌握严密的思维能力。在解题过程中,我不得不重复思考,审查每一个环节,确保每个推导步骤的准确性和严密性。这过程虽然艰辛,但成功地提升了我的思维严密性和细心程度。另外,高等数学学习中的小组讨论和团队合作也给了我很大的启示。通过与同学合作,每个人可以带来不同的思路和见解,我们可以互相学习、互相鼓励,并共同解决问题。这种团队合作精神不仅在高等数学中得到培养,还可以应用到其他学科和实际工作中。
结尾:总结(90字)。
总的来说,高等数学的学习不仅提高了我的数学水平,更重要的是培养了我解决问题的能力、批判性思维以及团队合作精神。这些能力将在我的未来学习和工作中发挥重要作用。通过高等数学的学习,我明白了数学不仅仅是一种学科,更是一种思维方式和处理问题的工具。
实用高等数学感想体会(案例19篇)篇二
高等数学是大学必修课程之一,是数学学科的重要组成部分。在我小学和初中的数学课上,我一直都是数学的优等生,但是对于高等数学,我却感到了困惑和挑战。在大学一年级的时候,我开始接触高等数学课程,刚开始觉得不太适应,因此在此期间感觉相当压抑。随着时间的推移,我开始更深入地研究这门学科,并尝试各种不同的学习方法,以便提高自己的成绩。最终,在经过无数次的努力后,我克服了困难,考出了令人满意的高等数学成绩。
第二段:回顾高等数学的考试经验。
在学习高等数学的过程中,我不仅学到了许多知识和技能,也经历了很多考试。这些考试无疑是对我学习成果的检验,也让我有机会去发现自己的弱点,找到不足之处,并尝试改进和克服它们。另外,这些考试还让我体会到了竞争的压力和紧张气氛,这些因素都激发了我更深入地学习高等数学的热情。
第三段:总结高等数学的重要性。
高等数学的学习不仅仅关乎学习数学知识,更重要的是培养了我学习的能力。在学习过程中,我不断努力,练习思考和分析的能力,提高了自己的逻辑推理和解决问题的能力。这些都是远远超出课程范围的技能,对我的职业生涯和个人发展有着深远的影响。此外,学习高等数学还让我感受到了知识的博大精深和对未知事物探索的热情,这些元素也能够对我未来的发展起到重要的支持作用。
第四段:点评吴昊的体会和经验。
吴昊是我身边一个优秀的同学,在高等数学的学习中他取得了出色的成绩。他的学习经验和体会也对我启发和影响很大。从吴昊的学习经验中,我们可以看到他在学习过程中非常注重理论知识的掌握和实践能力的培养。而且,吴昊非常善于把理论知识和实践技能有机结合起来,不断地总结和反思,从而实现了对高等数学的深入理解。这些学习方法和态度对我指引良多,让我对高等数学的学习也有了更多的信心和动力。
第五段:思考未来发展方向。
在未来的学习过程中,我还需要不断地探索和寻求新的机遇和挑战,以提高自己的学习能力和职业素养。高等数学作为一门必修课程,是培养我学习能力和解决问题能力的重要途径。在今后的学习和生活中,我将会更加努力和专注于高等数学的学习,以完成自己的职业规划和个人发展目标。
实用高等数学感想体会(案例19篇)篇三
高等数学是大学重要的数学基础课程,涉及到微积分、线性代数、概率论与数理统计等多个学科领域,为学生的数学素养和综合能力的提高带来了巨大的帮助。如今,我已经学习高等数学一年多,并考取了高分。在学习中,我积累了一些心得体会,现在愿意分享给大家。
一、认真理解概念。
高等数学中包含了大量的数学概念,这些概念是该学科的基础。我们要经常复习、深刻理解这些概念,才能更好地庖阐数学原理,推导出数学公式。对于某些难以理解的概念,可以寻找一些相关的实例进行解释,或者和同学一起讨论,共同掌握这些概念,这样才能更好地理解后面的内容。
二、透彻掌握习题。
高等数学的习题类型较多,需要我们不断地练习,从而巩固和提高自己的掌握程度。在做习题时,我们要遵循“由易到难”的原则,先做容易的,逐渐增加难度,提升自身的解题水平。做题时,也要注意拓展视野,不要仅局限于老师讲授的范围,多尝试一些新的方法和角度。
三、整合思维方式。
高等数学的学习需要我们具有一定的数学思维能力,这也是高等数学和初等数学一份四的区别所在。在学习中,我们要注重培养自己的数学思考能力,学会用多种方式解决一道问题,整合不同的思维方式,拓展自己的思路。这种能力的培养要靠平时的训练,结合习题、考试和解题课等多种形式进行。
四、注重细节处理。
在高等数学课程中,一个小小的细节往往决定着整道题的成败。因此,在学习高等数学时,我们必须将注意力集中在题目的细节上,严谨地对待每一步计算,避免出现计算错误。同时,在做习题和考试时,我们也要注意填写卷面和计算器的使用规范,这样才能避免走弯路,保证高分通过。
五、多方面寻求帮助。
高等数学作为一门比较重要的基础课程,难度比较大,我们学习中难免会遇到困难。遇到问题时,我们应该多方面寻求帮助,可以找老师、同学或者其他渠道,与他人交流和探讨,相互帮助提高解决问题的能力。此外,也要注重查找有关的参考书籍和一些网上的研究综述,引领自己更快地掌握课程要点。
总之,高等数学虽然难,但只要认真刻苦,多方寻求帮助,注重方向且扎实整合思维方式,严谨处理学习细节,逐渐提升自己的数学素养和思维能力,就可以取得好成绩,为自己的学业和未来的发展提供坚实的保障。
实用高等数学感想体会(案例19篇)篇四
高等数学下册是大学数学专业的重要课程之一,通过学习高等数学下册,我了解到这门课程主要包括多元函数微分学、多元函数积分学、无穷级数和函数项级数等内容。学习这门课程的主要目标是培养学生掌握多元函数微分和积分的方法和技巧,理解无穷级数和函数项级数的概念与性质,并能够通过数学方法解决实际问题。
通过学习高等数学下册,我对数学的认识有了进一步提高。多元函数微分学的学习让我明白了微分的几何意义,学会了使用微分来求解极值、拐点等问题。多元函数积分学的学习使我对积分的概念和性质有了更加深刻的理解,掌握了多重积分的计算方法和应用。无穷级数和函数项级数的学习则拓宽了我的数学视野,让我认识到数列和函数序列的收敛性与级数的收敛性之间的联系。
然而,学习高等数学下册也存在一定的难点。对于多元函数微分学来说,掌握微分的方法和技巧需要比较高的抽象思维能力;而多元函数积分学中的多重积分更需要对于积分概念和性质有深刻理解的基础。无穷级数和函数项级数的学习中,则会遇到各种判断级数收敛性的方法和技巧,需要一定的逻辑推理能力。对于这些难点,我通过反复的练习和查阅相关资料进行了克服,逐渐提升了自己的数学水平和解题能力。
学习高等数学下册是一项挑战,但也是一种享受。在学习的过程中,我感受到了数学的魅力和无穷的潜力。多元函数微分学中,每一个微小变化都能产生巨大的影响,通过微分来描述变化率和局部性质,并将其运用于实际问题的求解。多元函数积分学中,通过积分来求解曲面面积、体积等问题,发现积分的应用广泛而深入。无穷级数和函数项级数则展示了数列和函数序列的奇妙性质和各种数学推理的可能性。这些感受和体会使我对高等数学产生了更加浓厚的兴趣,也激发了我继续深入学习数学的动力。
为了优化学习高等数学下册的效果,我总结了一些方法和建议。首先,要善于理论联系实际,将数学知识与实际问题相结合,找到问题与数学模型之间的对应关系。其次,要注重练习,多做习题并及时查缺补漏。还可以积极参与讨论和交流,与同学互相学习、互相启发。而且,在学习过程中要保持积极的心态,相信自己能够解决遇到的难题。通过这些方法和建议,我相信能够更加有效地学习高等数学下册,取得更好的成绩。
通过学习高等数学下册,我对数学的认识得到了提高,数学知识的应用能力得到了加强。虽然学习过程中会遇到一些困难和挑战,但通过刻苦努力和持续学习,我相信自己能够取得更好的成绩,为今后的学习和发展打下坚实的基础。
实用高等数学感想体会(案例19篇)篇五
作为一门数学专业的必修课程,高等数学对学生来说并不易于掌握,需要在学习中不断地消化吸收。而吴昊,则是一位对高等数学有深入研究,并且在教学中取得了较好成绩的老师。因此,我们会特别关注吴昊的高等数学心得体会,从中汲取经验,提高学习效率。
第二段:心得体会一:高等数学需要系统性学习。
吴昊表示,高等数学知识体系庞杂,而且知识之间的联系非常紧密。因此,学生需要先从系统性入手,掌握高等数学的整体框架和学习路线。在学习中要注意先后顺序,不能掉以轻心,否则就会遇到迷失方向的情况。
第三段:心得体会二:掌握基础知识是关键。
高等数学中的每一个概念,都是建立在基础之上的。如果基础学习不扎实,那么后期的学习也无从谈起。因此,吴昊建议学生在学习高等数学之前,先重视基础概念的学习,巩固数学的基础知识,才能更好地理解和掌握高等数学。
第四段:心得体会三:灵活运用解题思路。
高等数学中的问题并不单一,其解题方法也需要灵活变通。吴昊提醒学生,在学习高等数学时,不能仅仅停留在概念和公式的记忆,而应该注重解决具体问题的能力。在解题过程中,应该运用多种思路,灵活变换解题方法,从而提高解题的效率和准确性。
第五段:结尾及总结。
高等数学在数学专业中占据着重要的地位,不仅有助于理论的研究,还能为工程应用提供数学依据。吴昊的高等数学心得体会不仅是学生能够学好高等数学的经验之谈,也能帮助教师对高等数学教学的优化。通过吴昊的经验与体会,我们可以更加准确地把握高等数学的学习方向,提高学习效率,做好学科的拓展与深化。
实用高等数学感想体会(案例19篇)篇六
经济学是考察社会经济现象、行为及其规律的学科,而计量经济学则是揭示经济学理论所考察的社会经济现象之间的数量规律。计量经济学的学习与应用能力,关键取决于能否运用经济学的思维方式观察理解经济现象,能否构建恰当的经济模型,能否准确进行参数估计与模型检验,使研究结论客观反映经济规律,进而为政策决策提供有意义的参考。目前,虽然计量经济学已被列为高等院校经管类各专业的重要课程,但我国计量经济学教学与研究与发达国家相比还有较大差距,进一步培养好计量经济学人才任重道远。为更好提升学生学习和应用能力,应着重从以下方面入手进行计量经济学人才的培养。
(一)有助于培养学生观察与分析经济现象的能力。
计量经济学重在培养学生基于经济学理论观察社会经济现象,勇于提出问题。譬如,在研究通货膨胀时,学生应回顾成本推动型、需求拉动型等通胀形成机制,思考这些理论能否解释现实。以始于2009年下半年的通货膨胀为例,显然,每个人都经历与感知到了该轮通货膨胀对自身的影响,企业家感觉到原材料上涨,居民感觉到菜价上涨,学生发现食堂饭菜价格上升。对于计量经济学的学生来说,首先要思考此轮通胀的原因与货币供给过多是否相关,进而要思考此轮通胀与过去通胀是否存在相同特征。教师要将这些问题引入课堂,适时引导学生思考与研究社会经济现象,这实质就是培养学生学习与研究计量经济学的能力。
(二)有助于培养学生研究社会经济现象的能力。
计量经济学教学是引导学生应用经济学理论理解经济问题的过程。由于社会经济现象的形成机制非常复杂,对同一经济现象经济学家存在不同的看法。经济学理论和计量经济学方法发展日新月异,这种快速的知识更新使得师生需要不断学习与研究。此外,经济现象本身也伴随经济体制、运行机制与经济结构的变化而发生复杂变化,对这些日益复杂的现实经济现象的深入考察,也考验着我们运用计量经济模型的能力。因此,深刻理解经济现象及其背后的机制,重在能否正确应用计量经济学。仍以通胀现象为例,学生可能首先联想到的是货币需求函数,此时,教师可以引导学生比较分析消费价格指数(cpi)与广义货币(m2)的时间序列数据。通过观察,m2增速于2009年起快速下降,但与此同时,通胀却表现出持续上涨的态势。该现象提醒我们,若以非线性货币需求函数建模,则可以揭示通胀与货币需求间的复杂关系。为此,适时引导学生针对我国特定的数据,探索性研究通胀与货币需求间的复杂关系,能够培养其学习与解决问题的能力。
(三)有助于培养学生研究计量经济理论的能力。
高等教育的重要落脚点是开发学生创新能力。在计量经济学学习中,学生的创新能力体现于能否发展计量经济学理论。比如,通过引导学生观察通胀现象,逐步提出以下问题:如何检验通货膨胀与m2是否是平稳序列?这两个变量是否存在协整关系?该关系是否具有非对称、非线性的特征?怎样检验与估计非对称、非线性的长期均衡关系?要回答以上问题,必须学习与发展计量理论,这需要我们拓展既有非平稳时间序列分析的理论与方法。因此,在研究中准确理解与应用相关理论与方法,特别是针对数据特征拓展计量理论,是培养与提升学生学习与应用能力的重点。
二、计量经济学教学实践改革路径。
现代计量经济学的主要内容有:单位根检验与基于非平稳变量的建模技术;描述经济现象复杂动态性的模型;使用面板数据建立的模型。这些理论与方法与之前的经典计量经济学相比存在较大区别,为使教学与现代计量经济学的发展相适应,许多教师从教材改革、教学方法创新、突出实验教学等角度思考了计量经济学的教学方法改革。基于培养学生能力这一角度,借鉴以往教学改革的有益建议,结合我国计量经济学教学的现实状况,在计量经济学教学实践中,尝试从以下方面践行教学活动。
(一)立足引导与启发。
首先要清晰讲授相关概念、理论和方法,梳理知识之间的内在联系,适时对学生提出问题,培养其智能。例如,在讲解参数估计量的线性无偏最小方差性质中,应分析估计量是被解释变量的线性样本组合,从而引导学生认识估计量的本质,在理解估计量为一个随机变量的基础上,提出其是否服从特定的分布,最终引导学生理解估计量的方差以及对备选估计量的方差分析比较。基于估计量的有效性,再讲解渐进无偏与渐进最优估计量。接下来,适时展示线性无偏最小方差估计量的仿真结果,以此引导学生理解基本的计量经济理论,把引导学生学习和“教会学生学习”一体化。
(二)贯穿“理论、方法和应用”三位一体。
在教学中因势利导,从经典计量经济学适当拓展到现代计量经济学,并据此阐释计量经济学的相关理论,注重学生的学习反应,清晰介绍相关前沿理论。培养学生学习与应用计量经济学的能力重在:一要阐释回归分析的产生背景及其内涵;二是要培养学生根据我国数据构建计量模型的能力;三是要根据学生的实际情况对讲授内容进行延伸。计量经济学前沿的理论与方法集中在文献中,应根据学生的知识基础与结构从教材延伸至文献中。比如,在讲授异方差时,适时引出arch模型及其应用;在讲授面板模型时,适时延伸到动态面板模型与广义矩估计,并结合我国各省市城镇居民收入的面板数据,介绍动态面板模型和广义矩估计的分析思路。这种适时适度地引申新的知识,不但使学生深入理解基础概念,还启发学生拓展知识进行应用研究。
(三)充分利用蒙特卡洛仿真技术。
针对学生对计量经济学理论望而生畏的现状,我们利用蒙特卡洛仿真技术,通过编程将计量经济学中晦涩难懂的估计与检验理论转化为仿真结果,使得学生对抽象数学公式的模糊认识,转化为对仿真图形直观深入的理解。比如,线性无偏有效估计量的统计含义,既是参数估计中最基础的知识,又是大多数学生难懂的部分。在教学中采用仿真实验和仿真图形,让学生对抽象的计量理论产生直观的认识。又如,模型的误设定(如随机误差项的异方差性)及其导致的相应后果,是学习传统线性计量模型基本假设的重点,由于需要较强的数理统计学基础,这部分内容不但学生难理解,也是教师难以诠释清楚的问题。通过仿真实验结果能够形象展示违背经典计量经济假设下所导致的结果,促进学生对设定正确模型的重要意义产生深刻理解。这种仿真实验的教学模式不仅避免数学方面繁杂的推导过程,防止学生对计量经济理论“望而生畏”,还培养了其创新性的学习与研究能力。
三、计量经济学教学创新策略。
不断创新教学方法,培养学生对计量经济学的学习兴趣与解决问题的能力,是“学生主动学习”与“干中学”这种新型教学理念的出发点与落脚点。在教学实践中,我们采用如下策略。
1.在课堂讲授中有意识地提出问题,与学生互动,共同讨论问题,适时延伸问题,将学生引入到对相关前沿文献的学习。例如,为何采用标准差衡量估计量的精度?ols与广义gmm的估计原理区别在哪?单位根检验统计量的概率分布为何区别于常规分布?通过不断提出类似问题,与学生“互动式”讨论并且解答问题,不仅可以启发学生的思维向深度与广度发展,还有助于激发其学习积极性。
2.在课堂教学中协调理论讲授、案例分析、实验教学之间的关系。课堂教学的核心是模型设定、参数估计与假设检验等,案例分析和实验教学的目的在于帮助学生直观理解理论和方法,并促进其学以致用,能够进行经济学研究,但绝对不应以软件操作教学替代基础理论的教学。在讲解理论的基础上,适时操作相关的计量经济学软件,解释软件输出结果,是实现理论教学和实验教学融合的有效路径。
3.通过案例与数据分析,建立恰当的计量经济学模型,引导学生灵活运用。不管是经济学理论,还是计量经济学的研究,经济现象及其背后的运行规律是学生关注的问题。基于我国的实际例子讲授计量模型,容易激发学生对计量经济学的学习兴趣,能够有效促进学生应用所学知识解决现实经济问题的能力。针对计量经济学“难教、难学、难懂”,上述教学方法体现“学生主动学习”和“干中学”等先进教学理论的精神实质,不仅使学生带着浓厚的兴趣学习计量经济学,也开拓了其知识视野,培养学习、研究与应用计量经济学的能力。
将本文的word文档下载到电脑,方便收藏和打印。
实用高等数学感想体会(案例19篇)篇七
高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。
1.1误区一很多学生认为学数学没有用。
高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什幺用,在将来实际工作中也用不到数学。
1.2误区二高等数学具有很高的抽象性,很多学生觉得学也学不会。
现在学生不愿意动脑、动笔,碰到题目就在想答案。往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。
1.3误区三学生习惯于用中学的思维来解题。
很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。随着学习的深入学生发现题目越来越不会做。
2.1端正学生学习态度。
许多同学认为,考上大学就可以放松了,自我要求标准降低了。只有有了明确的学习目标,端正学习态度,才能增加学习高等数学的动力。教师要以身作则,这要求教师热爱数学,对每节课都要以饱满的激情、对数学美的无限欣赏呈现在学生面前,教师积极地态度从而感染学生学习高等数学的热情。部分同学在应试教育的影响下,应经形成了消极的数学态度,教师还应该全方位、多角度扭转学生学习态度,如课下谈心谈话、建立互助兴趣小组、“一对一”结对子等方法,提高学生学习数学的动力。端正学生的学习态度首先从数学字母的写法、发信做起,很多学生古希腊字母不会写也不会读,上课多练习几遍,老师在做题过程中要注重解题的每一步骤,告诉学生每一步骤的重要性,做题中感受数学题的美。
2.2激发学生学习兴趣。
兴趣是最好的老师,只有有了学习高等数学的兴趣,学生才有了学习动力。在教学过程中,可以穿插一些关于数学的历史,数学家的故事,数学文化,来激发学生的兴趣。如定积分的讲解时,自然引入牛顿、莱布尼茨两位数学家的故事。教师在课堂讲解时,把抽象的问题具体化,通过几何画图提高学生的理解能力,这样学生才更容易接受。
2.3提高教师自身素质。
教师是课堂教育的主导者,是良好课堂氛围的主要营造者,要想学生紧跟教师讲课的思路,教师必须具有良好的人格魅力和深厚的专业功底。这就要求教师一方面要提高自身的文化底蕴,多读一些与另一方面刻苦专研专业知识、完善知识结构、提高教育教学能力,只有做到这样,教师的课堂教育才能吸引学生,课下学生才愿意并主动与教师交流、沟通。教师在上课的时候要身体力行,做题要在步骤上下功夫,解释每一步骤的重要性,既要用最少的步骤把题做完,又要讲解每一步骤的重要性。这样虽然浪费了一点时间,但是学生还是会做的,同时学生也得到了怎样去做题以及真正的理解数学题,并从中发现数学美,时间长了能培养学生良好的数学兴趣、数学能力和创新能力。对所讲授的课程要有深入的了解,知识的内在联系及在学生专业上的应用要有所了解,可以给学生提一提,以便引起学生足够的重视。
2.4创新教师教学方法。
2.5建立良好的师生关系。
在教育教学活动中,良好的师生关系是保证教育效果和质量的前提。新时代的大学生具有自我意识强,个性张扬等特点,要提高课堂教育效果,必须建立良好的师生关系。只有师生间相互了解、相互尊重、相互赏识,把教学过程看做是教师与学生的交流、交往过程,才能建立轻松、和谐的课堂氛围,从而才能提高课堂教育效果和教学质量。教师在教学的过程中,要学会换位思考,站在学生的角度估计讲授问题的难易程度。对学生容易出错或者经常犯错误的地方,上课要强调知识的重要性,举例说明让学生理解知识点及了解出错的原因。
2.6重视作业中存在的问题。
作业是学生学习知识好坏的一面镜子,虽然现在学生有抄袭作业的现象,但是大部分学生还是自己做作业。从作业中可以看出学生对知识掌握的程度,没掌握好的话,想办法用最简单的题目来说明问题。也许作业有可能做的非常好,这就要求教师对知识有很好的理解,对学生容易出错的地方,上课时可以提问学生做过的题目或者让学生课前上黑板重新做。这样一学期下来,学生对难点重点会掌握的很好,考试成绩自然会很好,同时对高等数学理解的程度也会很高。学生取得了好的成绩,对高等数学了解的多了,自然对高等数学学习兴趣提高了。在以后的学习过程中,自然会对各种数学课更加努力的去学习,从而对其本专业课也起到了很好的促进作用。最终学生会发现大学生活是非常快乐的,学到了很多知识,学校也培养出了合格的大学生。
【参考文献】。
实用高等数学感想体会(案例19篇)篇八
第一段:学习动机与目标(引言)。
高等数学是一门对于大部分大学生来说充满挑战的学科。作为一名大学生,我对高等数学学习非常重视,因为它是我专业学习的基础课程之一。在学习高等数学的过程中,我经历了许多辛苦和困惑,但也从中收获了很多。在这篇文章中,我将与大家分享我的高等数学学习心得体会。
第二段:规划和时间管理(学习方法和技巧)。
在面对高等数学这门课程时,我意识到规划和时间管理是非常重要的。高等数学包含了大量的知识点和公式,因此我制定了一个学习计划,将每个知识点分配到不同的时间段,并给自己留出足够的时间进行复习和巩固。我还学会了合理安排每天的学习时间,将重点放在疑难问题上,以便更好地掌握知识。
第三段:找到适合自己的学习方式(学习方法和技巧)。
在高等数学学习的过程中,我发现找到适合自己的学习方式能够提高学习效果。有些人更适合通过听讲座和课堂上的互动来学习,而我更喜欢通过自学和解题来掌握知识。我经常和同学们一起组队讨论问题,通过交流和互帮互助来解决难题。这种学习方式不仅巩固了我的知识,还提高了我的解题能力和思维灵活性。
第四段:克服困难与坚持学习(学习态度与人生观)。
高等数学是一门需要耐心和恒心的学科。在学习过程中,我遇到了许多困难和挫折,但我相信只要坚持下去,就一定能够克服这些困难并取得好成绩。我时常重复着“努力就会有回报”的信念,坚持每天都学习一段时间高等数学,无论是通过自学、参加辅导班或向老师请教,我都不放弃任何机会来提高自己的数学水平。
第五段:从高等数学中的应用反思(学科价值与人生思考)。
通过学习高等数学,我不仅掌握了数学知识,更培养了自己的逻辑思维和问题解决能力。高等数学课程中的许多概念和方法在实际生活中都有广泛的应用。数学是一门实用的学科,它不仅帮助我们理解世界的运作方式,还能培养我们的逻辑思维和抽象思维能力。通过高等数学的学习,我深深体会到数学不仅仅是个工具,更是一门能够引导我们思考和解决问题的科学。
总结:
通过高等数学的学习,我不仅掌握了基本概念和方法,也培养了自己的学习方法和态度。我发现规划和时间管理对于高等数学学习非常重要,找到适合自己的学习方式能够提高学习效果。在困难和挫折面前要坚持学习,相信努力会有回报。最重要的是,高等数学的学习不仅可以提高我们的数学水平,还能帮助我们培养逻辑思维和解决问题的能力。通过高等数学的学习,我对数学这门学科有了更深入的理解,也对自己的学习和未来充满了信心。
实用高等数学感想体会(案例19篇)篇九
原本以为凭借小学到高中这十余年所总结出的数学学习方法,就能轻松应对大学高等数学的学习。
然而,经过一个多学期的学习,我真正体会到高等数学的学习特点与以往所学习的数学大相径庭。因此,我必须在学习过程中找到高等数学的独特之处,总结出一套新的有效的方法,才能在高等数学的学习中做到游刃有余。
就我个人而言,我认为高等数学有以下几个显著特点:
(1)识记的知识相对减少,理解的知识点相对增加;
(2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;
(3)系实际多,对专业学习帮助大;
(4)教师授课速度快,课下复习与预习必不可少。
以前上数学课,老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。
然后像背单词一样,把一堆公式与结论死记硬背下来。
哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。
而现在,我不再有那么多需要识记的结论。
唯一需要记住的只是数目不多的一些定义、定理和推论。
老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。
我们必须知道解题过程中每一步的依据。正如我前面所提到的,中学时期学过的许多定理并不特别要求我们理解其结论的推导过程。
而高等数学课本中的每一个定理都有详细的证明。
最初,我以为只要把定理内容记住,能做题就行了。
然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。
于是,我开始认真地学习每一个定理的推导。有时候,某些地方很难理解,我便反复思考,或请教老师、同学。尽管这个过程并不轻松,但我却认为非常值得。
因为只有通过自己去探索的知识,才是掌握得最好的。
总而言之,高等数学的以上几个特点,使我的数学学习历程充满了挑战,同时也给了我难得的锻炼机会,让我收获多多。
进入大学之前,我们都是学习基础的数学知识,联系实际的东西并不多。在大学却不同了。
不同专业的学生学习的数学是不同的。
正是因为如此,高等数学的课本上有了更多与实际内容相关的`内容,这对专业学习的帮助是不可低估的。
比如“常用简单经济函数介绍”中所列举的需求函数,供给函数,生产函数等等在西方经济学的学习中都有用到。
而“极值原理在经济管理和经济分析中的应用”这一节与经济学中的“边际问题”密切相关。如果没有这些知识作为基础,经济学中的许多问题都无法解决。
当我亲身学习了高等数学,并试图把它运用到经济问题的分析中时,才真正体会到了数学方法是经济学中最重要的方法之一,是经济理论取得突破性发展的重要工具。这也坚定了我努力学好高等数学的决心。希望未来自己可以凭借扎实的数理基础,在经济领域里大展鸿图。
高等数学作为大学的一门课程,自然与其它课程有着共同之处,那就是讲课速度快。
刚开始,我非常不适应。上一题还没有消化,老师已经讲完下一题了。带着几分焦虑,我向学长请教学习经验,才明白大学学习的重点不仅仅是课堂,课下的预习与复习是学好高数的必要条件。
于是,每节课前我都认真预习,把不懂的地方作上记号。课堂上有选择、有计划地听讲。
课后及时复习,归纳总结。逐渐地,我便感到高数课变得轻松有趣。只要肯努力,高等数学并不会太难。
高等数学有其独特之处,但它毕竟是数学,那么一定量的习题自然必不可少。
通过练习,才能更深入地理解,运用。
以上便是本人一个多学期以来,学习高等数学的一些体会。
希望自己能在以后的学习中更上一层楼!
实用高等数学感想体会(案例19篇)篇十
高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。
一、高等数学教学中学生存在的误区1.误区一很多学生认为学数学没有用。
高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什么用,在将来实际工作中也用不到数学。
2.误区二高等数学具有很高的抽象性,很多学生觉得学也学不会。
现在学生不愿意动脑、动笔,碰到题目就在想答案。往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。
3.误区三学生习惯于用中学的思维来解题。
很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。随着学习的深入学生发现题目越来越不会做。
二、提高高等数学教学质量的方法1.端正学生学习态度。
许多同学认为,考上大学就可以放松了,自我要求标准降低了。只有有了明确的学习目标,端正学习态度,才能增加学习高等数学的动力。教师要以身作则,这要求教师热爱数学,对每节课都要以饱满的激情、对数学美的无限欣赏呈现在学生面前,教师积极地态度从而感染学生学习高等数学的热情。部分同学在应试教育的影响下,应经形成了消极的数学态度,教师还应该全方位、多角度扭转学生学习态度,如课下谈心谈话、建立互助兴趣小组、“一对一”结对子等方法,提高学生学习数学的动力。端正学生的学习态度首先从数学字母的写法、发信做起,很多学生古希腊字母不会写也不会读,上课多练习几遍,老师在做题过程中要注重解题的每一步骤,告诉学生每一步骤的重要性,做题中感受数学题的美。
2.激发学生学习兴趣。
兴趣是最好的老师,只有有了学习高等数学的兴趣,学生才有了学习动力。在教学过程中,可以穿插一些关于数学的历史,数学家的故事,数学文化,来激发学生的兴趣。如定积分的讲解时,自然引入牛顿、莱布尼茨两位数学家的故事。教师在课堂讲解时,把抽象的问题具体化,通过几何画图提高学生的理解能力,这样学生才更容易接受。
3.提高教师自身素质。
教师是课堂教育的主导者,是良好课堂氛围的主要营造者,要想学生紧跟教师讲课的思路,教师必须具有良好的人格魅力和深厚的专业功底。这就要求教师一方面要提高自身的文化底蕴,多读一些与另一方面刻苦专研专业知识、完善知识结构、提高教育教学能力,只有做到这样,教师的课堂教育才能吸引学生,课下学生才愿意并主动与教师交流、沟通。教师在上课的时候要身体力行,做题要在步骤上下功夫,解释每一步骤的重要性,既要用最少的步骤把题做完,又要讲解每一步骤的重要性。这样虽然浪费了一点时间,但是学生还是会做的,同时学生也得到了怎样去做题以及真正的理解数学题,并从中发现数学美,时间长了能培养学生良好的数学兴趣、数学能力和创新能力。对所讲授的课程要有深入的了解,知识的内在联系及在学生专业上的应用要有所了解,可以给学生提一提,以便引起学生足够的重视。
4.创新教师教学方法。
好的教学方法能激发学生思维能力,启迪学生的思维悟性。教师在教学方法上进行创新能有效改善课堂教学的效果。如教师在讲授极限时,可以采用情景教学方法,把抽象的定义、定理与实际生活相联系,营造学生认知悬念,从而激发学生自主探索的积极性,从而提高学生思维能力和发现、分析问题的能力。在教学空闲的时候、或者学生比较累的时候、或者在讲到某一个问题时,可以讲一些实际的东西。如在刚开始学极限时,现在学生都在教学楼上课,教室里到处可见支撑楼的柱子。柱子不能太细,细了楼就有可能倒掉,也不能非常粗,那样虽然结实了,但是浪费材料,建筑商也不会同意。这样柱子肯定要通过数学计算得到一个合理的数值,既要能承重又要节约材料,这个确定的数就可以认为是一个极限。
5.建立良好的师生关系。
在教育教学活动中,良好的师生关系是保证教育效果和质量的前提。新时代的大学生具有自我意识强,个性张扬等特点,要提高课堂教育效果,必须建立良好的师生关系。只有师生间相互了解、相互尊重、相互赏识,把教学过程看做是教师与学生的交流、交往过程,才能建立轻松、和谐的课堂氛围,从而才能提高课堂教育效果和教学质量。教师在教学的过程中,要学会换位思考,站在学生的角度估计讲授问题的难易程度。对学生容易出错或者经常犯错误的地方,上课要强调知识的重要性,举例说明让学生理解知识点及了解出错的原因。
6.重视作业中存在的问题。
作业是学生学习知识好坏的一面镜子,虽然现在学生有抄袭作业的现象,但是大部分学生还是自己做作业。从作业中可以看出学生对知识掌握的程度,没掌握好的话,想办法用最简单的题目来说明问题。也许作业有可能做的非常好,这就要求教师对知识有很好的理解,对学生容易出错的地方,上课时可以提问学生做过的题目或者让学生课前上黑板重新做。这样一学期下来,学生对难点重点会掌握的很好,考试成绩自然会很好,同时对高等数学理解的程度也会很高。学生取得了好的成绩,对高等数学了解的多了,自然对高等数学学习兴趣提高了。在以后的学习过程中,自然会对各种数学课更加努力的去学习,从而对其本专业课也起到了很好的促进作用。最终学生会发现大学生活是非常快乐的,学到了很多知识,学校也培养出了合格的大学生。
实用高等数学感想体会(案例19篇)篇十一
第一段:引言(150字)。
在大学学习期间,高等数学是我们无法回避的一门课程。对于许多学生来说,高等数学可能是他们第一次接触到抽象的数学概念和复杂的数学运算。然而,通过数学家和教育家的不断努力,高等数学正在变得越来越有趣和易于理解。在我个人的学习过程中,我逐渐领悟到高等数学的重要性和应用场景,并从中获得了许多宝贵的经验和体会。
第二段:兴趣驱动学习(250字)。
我发现,对于高等数学的学习来说,培养兴趣是至关重要的。在开始学习高等数学之前,我对这门课程没有太多的期待。然而,通过与教师的互动和进一步的研究,我开始意识到高等数学是一门实际应用广泛且充满挑战的学科。我发现高等数学在物理、经济学甚至金融学中都起着重要的作用,并且具有许多实用性的应用。为了更好地理解和应用高等数学的知识,我主动参加数学建模和实验课程,并且积极加入数学学术团队。通过这些课程和团队活动,我发现高等数学能够帮助我们解决实际问题,并且在现实生活中起到重要的作用。
第三段:实践驱动理论(250字)。
在高等数学的学习过程中,我体会到实践是巩固理论知识的重要手段。通过解决一系列的习题和实际问题,我逐渐运用所学的数学方法来解决复杂的问题。并在此过程中体会到从纸上计算到实际应用的转换。在学习微积分时,我除了翻阅课本上的例题和习题外,还多次利用数学软件进行计算和模拟,并尝试将所学的理论用于解决实际问题。通过这样的实践过程,我不仅加深了对高等数学理论的理解,还培养了解决实际问题的能力。
第四段:提升逻辑思维(250字)。
高等数学的学习让我逐渐锻炼了逻辑思维能力。通过学习证明方法、推理规则以及数学定理等知识,我逐渐培养了严密的逻辑思维和分析问题的能力。高等数学课程中的证明过程迫使我们思考每一个步骤的合理性和正确性,并提出自己的证明思路。这种思考方式使我从中受益匪浅,不仅在数学领域受益,还在其他学科中应用中受益。
第五段:结语(300字)。
通过高等数学的学习,我逐渐发现抽象的数学世界与现实生活是息息相关的。高等数学的学习让我在思维、逻辑、实践等多个方面得到了全面的提升。通过在数学领域中的探索与研究,我重新定义了对于高等数学这门课程的认知,并且树立起全新的目标和动力。高等数学不仅仅是为了通过考试,更是培养我们终身学习的能力和思维方式的桥梁。在未来的学习和工作中,我相信高等数学所赋予的知识和能力会继续对我产生重大影响。因此,我会继续努力学习高等数学,并将所学应用于实际生活中,为现实问题的解决提供更多有益的思考和方法。
实用高等数学感想体会(案例19篇)篇十二
随着科技日新月异的发展和电脑无孔不入的应用。高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。
以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。
我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的。还是充分的'?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。
发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。
学习数学,不做习题是绝对不行的。因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘。思考深入了,学习的兴趣也会逐步培育起来。
实用高等数学感想体会(案例19篇)篇十三
段落一:引言(大约200字)。
大学高等数学是大一学生必修的一门课程,对于计算机类及理工科的学生来说,这门课程无疑是一道门槛,而我作为一个计算机专业的新生,刚开始接触高等数学时感到非常头疼。然而,通过一学期的学习和不断努力,我逐渐找到了适合自己的学习方法,并积累了一些宝贵的经验与体会。在此,我将分享我在大一学习高等数学的心得体会。
段落二:承接引言,学习方法与技巧(大约300字)。
学习高等数学的过程中,我发现理解概念是非常重要的。在上课时,我会积极听讲,并将重要的概念和定理记下来。课后,我会再次阅读课本,核对概念和定理的理解。此外,做习题是巩固知识和提高解题能力的最佳途径。我通常会把课后习题分为难度较低和较高的两部分,先完成较低难度的习题,再挑战较高难度的题目。当遇到自己无法解答的题目时,我会主动请教同学或老师,并通过讨论和思考找到解题的线索。
在学习高等数学的过程中,我学会了如何使用资源。网络和学校图书馆可以是我们辅助学习的好帮手。我会利用搜索引擎查找相关概念和解题技巧,同时还会借阅一些与高等数学相关的书籍。此外,积极参加学校和系里组织的学习活动,如学术讲座和辅导班,也能为我们提供更多的资源和学习机会。
段落三:挑战与坚持(大约300字)。
学习高等数学不是一帆风顺的,有时会遇到难题和无助的时刻。但是,我学会了面对挑战并坚持下去。当遇到困难时,我不会轻易放弃,而是将问题细分为小块,集中精力解决每个小问题。在高等数学中,掌握了基本概念和方法后,我们可以逐渐拓展自己的思维,进一步挑战更高难度的问题。坚持不懈的努力会有所回报,我经历了种种困难和挫折,也收获了成就感和成绩的提高。
段落四:应用与实践(大约200字)。
高等数学不仅仅是一门理论课程,它在现实生活中也有广泛的应用。在学习中,我尝试与实际问题进行结合,并应用所学的知识来解决实际困难。例如,计算机图形学中的三角函数和微积分概念可以帮助我们优化图像处理算法;概率论与统计学的知识可以用于数据分析和决策模型的建立等等。实际应用不仅可以加深对知识的理解,还能提高解决问题的能力和应用能力。
段落五:总结与展望(大约200字)。
大学的高等数学不仅仅是让我们通过考试,更是锻炼我们的逻辑思维和解决问题的能力。在我学习高等数学的过程中,我体会到了逻辑思考的重要性,积累了自学能力和解决问题的经验,也领悟到了数学的美和智慧。尽管学习高等数学的过程有时困难重重,但我相信只要坚持下去,没有攀不上的难题。未来,我会继续努力学习数学,将数学的智慧应用于计算机科学的研究中,为科技发展做出自己的贡献。
实用高等数学感想体会(案例19篇)篇十四
高等数学导论是大学数学的重要基础课程之一,通过学习这门课程,我深刻体会到了高等数学的重要性和普遍适用性。下面将从高等数学导论的学习目标、学习方法、应用价值、困难与挑战以及对自身的影响等五个方面,详细分享我的心得体会。
高等数学导论作为大学一年级的数学课程,其主要学习目标是培养学生的数学分析能力和逻辑思维能力。在学习过程中,我明确了数学分析是一门基于极限概念的数学分支,能够帮助我们理解和解决实际问题。通过学习高等数学导论,我深入了解了数学分析的基本理论和方法,为今后更深入地学习数学建立了坚实的基础。
在学习高等数学导论的过程中,我积累了一些有效的学习方法。首先,理论与实践相结合,通过解决实际问题,将抽象难懂的数学概念具象化,加深记忆和理解。其次,勤于观察和思考,针对问题找出解决方案,培养自己的创造性思维能力。此外,与同学进行讨论和交流,共同解决难题,不断拓宽自己的视野和思维方式。
高等数学导论的学习对我们的实际生活有着重要的应用价值。数学作为一门基础学科,广泛应用于各个学科和领域。在物理、化学、经济学等领域中,数学作为基础工具,帮助我们分析和解决实际问题。高等数学导论中的极限、函数和微分等概念和方法,是其他数学分支和应用领域的基石和核心内容。因此,只有通过学习高等数学导论,我们才能更好地应对其他学科和实际问题。
高等数学导论的学习过程中,不可避免地会遇到一些困难与挑战。高等数学以其抽象性和深奥性而闻名,对于许多学生来说是一大难点。例如,极限概念的理解和运用、函数的性质和图像的绘制等方面都是需要耐心和精力的。然而,只要我们保持积极的态度和坚持不懈地努力,相信一定能够克服困难,并取得优秀的成绩。
学习高等数学导论对我个人的影响是非常深远的。首先,通过学习这门课程,我养成了良好的思维习惯和逻辑思维能力,提高了自己的分析和解决问题的能力。其次,我在这门课程中体会到了数学的美妙和普适性,激发了我对数学的浓厚兴趣,也为今后学习更深入的数学课程打下了坚实的基础。此外,高等数学导论的学习还培养了我坚持不懈的勤奋精神和团队合作能力,为我未来的学习和职业发展打下了基础。
总之,通过学习高等数学导论,我不仅掌握了数学分析的基本理论和方法,培养了数学分析和逻辑思维能力,还体会到数学的重要性和普适性。在将来的学习和工作中,我会运用所学的知识和方法,积极解决实际问题,努力将高等数学导论所带给我的收获和体会发扬光大。
实用高等数学感想体会(案例19篇)篇十五
1.提前预习:上课前抽出一个钟或半个钟的时间,预习一下要学习的东西,不明白的做笔记,带着问题有目的的听讲。
2.借助外部力量:可以借助一些辅导书,习题册,帮助自己更好的理解。
3.概念反复研究:概念性的知识缺乏直接的经验,因此需要反复的研究演练。
4.数学语言:多练习运用数学语言进行描述,数学语言是符号语言,简明准确,自成体系,是数学思维的基础。
5.知识系统化:
a.理脉络:极限思想贯穿高等数学始终,其它主要知识体系的建立、主要问题的解决都依赖于它。
b.知基础:例如,导数是微分的基础,牛顿—莱布尼兹公式是积分学的基础。
c.分层次:采用化归的数学思想。例如,定积分、重积分、曲线积分、曲面积分等都是和式的极限,层层深入提高,而解题方法又都归结到不定积分的基础上来。
d.举反例:例如,函数在某点的极限存在,而在该点处却不连续。
e.找特例:采用从特殊到一般的数学思想,再把特例中的条件更换为一般的条件,即可得出一般性的结论。
f.明了知识的交叉点:例如,微分学与解析几何的某些知识点的结合,产生了微分几何的初步知识—曲率、切线、切平面、法线、法平面等。
g.几何直观:采用数形结合的数学思想,使抽象的函数关系变为形象的几何图形,使概念、定理更易于理解和掌握。
6.要适当多做习题,注意积累解题经验,及时总结:
a.分题型:按数学思想及方法的不同分清不同题型,即可达到事半功倍的学习效果。
b.重方法:注意平时做题方法的积累,例如,条件极值问题和部分不等式的证明,引入辅助函数的方法。
c.按步骤:根据步骤一步一步进行解答,不要嫌麻烦,例如,求最值问题。
d.找规律:某些问题可以按照一定的规律解决。
实用高等数学感想体会(案例19篇)篇十六
高等数学作为大一学生的必修课程之一,对于我来说,是一个全新的挑战。在这一学期的学习过程中,我体会到了高等数学的重要性,同时也收获了一些学习方法和体会,接下来我将和大家分享我的心得体会。
首先,高等数学的学习需要我们建立良好的数学基础。在大学入学前,我曾经通过小学和中学的教育学习了一些基础的数学知识,但是我发现这些知识只是大学高等数学学习的基础,无法满足大学高等数学的学习要求。所以,在开学伊始,我们就进行了一系列数学基础的复习,比如函数的概念、极限的计算方法以及导数和积分的运算规则等。通过复习和掌握这些基础知识,我们才能更好地理解和掌握高等数学的内容。
其次,高等数学的学习需要注重理论和实践相结合。高等数学虽然受到了许多学生的抱怨,但是作为一门科学,它的理论性和实践性是相辅相成的。我们需要通过理论知识学习和数学模型的建立来理解高等数学的概念和定理,并且通过习题和实例的练习来让我们学以致用。在学习高等数学的过程中,我发现,只有理论和实践相结合,我们才能真正掌握高等数学的知识,运用到实际问题中。
然后,高等数学的学习需要培养良好的思维习惯和解决问题的能力。高等数学的学习不仅仅是掌握一些定理和公式,更重要的是培养我们的思维能力和解决问题的能力。在解决高等数学的问题中,我们需要灵活运用所学到的知识,善于分析问题,找出问题的解决方法,并将解决方法转化为数学公式和计算过程。通过这个过程,我们能够提高我们的逻辑思维和数学思维能力,这对于我们以后的学习和工作都是非常重要的。
最后,高等数学的学习需要我们合理安排时间并保持良好的学习习惯。学习高等数学需要我们有足够的时间来进行概念的理解和习题的练习。而且,高等数学的内容非常庞大,需要我们进行系统性的学习和整理。因此,我们需要制定合理的学习计划,并保持良好的学习习惯,比如每天定时复习课堂内容,及时解决学习中遇到的问题,以及参加课外数学竞赛和讨论,这些都能够帮助我们更好地学习高等数学。
综上所述,高等数学是大一学生必修的一门课程,通过学习高等数学,我们能够更好地理解和应用数学知识。通过建立良好的数学基础、注重理论和实践相结合、培养思维习惯和合理安排时间等方法,我们能够更好地学习高等数学。希望我的心得体会能够对大家有所启发,并且能够在大一的高等数学学习中取得更好的成绩。
实用高等数学感想体会(案例19篇)篇十七
高等数学是理工科专业必修的一门重要课程,对于提升数学思维,培养分析和解决实际问题的能力有着重要的作用。在高等数学下册学习的过程中,我深感受益匪浅。下面就是我对高等数学下册的心得体会。
首先,高等数学下册强调的是更深入的数学理论和应用。在上册我们学习了微积分的基础知识,在下册我们进一步学习了微分方程、多元函数、空间解析几何等内容。这些内容对于学习者来说都是比较新颖和抽象的,要求我们更深入地理解和掌握数学的概念和方法。通过学习下册高等数学,我逐渐明白了数学是一门探索自然规律和解决实际问题的学科,数学理论与实际应用是密不可分的。
其次,高等数学下册的学习注重于培养学生的逻辑思维和问题解决能力。数学是一门以逻辑为基础的学科,通过学习高等数学下册,我更加深刻地理解了逻辑思维和问题解决能力的重要性。在解题过程中,我们需要根据所学的数学理论与知识,运用逻辑推理,灵活运用解题方法,从而解决各种复杂的数学问题。通过不断练习和思考,我逐渐提升了我的逻辑思维和问题解决能力,并且在其他学科中也能够得到运用和提升。
第三,高等数学下册的学习培养了我的数学抽象和建模能力。数学作为一门抽象的学科,需要我们学会抽象问题、建立数学模型,并在模型的基础上进行分析和解决问题。在学习下册高等数学的过程中,我有了更多的机会进行数学建模,并且通过实例分析和计算来验证和应用模型。这种训练不仅提高了我的数学抽象思维能力,还培养了我应对实际问题的能力。数学建模能力是未来工作和研究中必不可少的能力,通过学习下册高等数学,我在这方面的能力得到了提升。
第四,高等数学下册的学习强调了数学与实际问题的联系。数学作为一门工具学科,它的应用范围广泛,与物理、化学、经济和工程等学科存在着密切的联系。在学习下册高等数学的过程中,我通过一些实际问题的分析和解决,深刻体会到了数学的实际应用。例如,在学习微分方程时,我们可以通过微分方程来描述一些物理现象、生态系统的变化规律等。这样的学习过程增强了我对数学与实际问题之间联系的认识,也让我更加明确了数学的重要性。
最后,高等数学下册的学习给我带来了很多的快乐。数学是一门极具美感的学科,通过解题和推导,我们可以发现数学之美。在学习下册高等数学的过程中,我常常感受到当成功解答一个困难的问题时的喜悦和成就感,这也激发了我对数学的兴趣和热爱。在解题过程中,我探索、思考和创新,不断挑战自己,这种过程本身就是一种乐趣。
总之,通过学习高等数学下册,我不仅在数学理论和应用上有了更深入的了解和认识,也发现了逻辑思维和问题解决能力在学习和工作中的重要性,培养了数学抽象和建模能力,增强了数学与实际问题之间的联系,同时也感受到了数学学习的乐趣和成就感。这些都使我对高等数学下册留下了深刻的印象和珍贵的回忆。我相信,通过对高等数学下册的学习和体会,我将在今后的学习和工作中更好地运用数学,更好地解决各种实际问题。
实用高等数学感想体会(案例19篇)篇十八
高等数学是大学数学教学中的一门重要课程,它深入探讨了微积分、常微分方程、多元函数等数学领域的理论与应用。作为一名学习高等数学的学生,通过学习本学期下册的高等数学课程,我有了一些心得体会。在这篇文章中,我将分享我对于高等数学下册的认识和体悟,以及它对于我的学习和思维方式的影响。
高等数学下册是高等数学课程的延续,它包含了微分方程、重积分、无穷级数和场论等内容。与上册相比,下册的内容更加深入和细致。通过学习下册的课程,我对高等数学的整体框架有了更加清晰的认识,同时也加深了对微积分的理解。微分方程是高等数学下册的重点之一,它在科学研究和工程应用中具有重要意义。通过学习微分方程,我对于它在实际问题中的应用有了更深刻的认识,从而增强了我的问题解决能力。
高等数学下册的学习过程强调了逻辑思维的培养。在解题过程中,我学会了运用严密的逻辑推理和抽象思维来分析问题,从而解决复杂的数学问题。在学习重积分和无穷级数时,尤其需要运用逻辑思维进行推导和证明。通过这些习题的解答,我逐渐培养出了逻辑思维的能力,提高了自己的数学素养。我相信,逻辑思维的培养不仅对于学习数学有着重要意义,也对于我们日常生活和职业发展具有积极影响。
学习高等数学下册的过程中,我发现课本中的理论和知识需要通过实践来加深理解。例如,在学习微分方程时,我们需要通过实际问题的建模和求解,来验证所学知识的正确性和适用性。通过课堂上的实例和作业的练习,我提高了自己的实践能力。而这种实践能力也是在工程和科技领域中所必须具备的。通过实践能力的培养,我相信自己在未来的学习和工作中能够更好地应对各种挑战。
面对高等数学下册的内容,我深刻体会到了合理的学习方法的重要性。在解决数学问题时,我逐渐掌握了一些学习技巧。例如,在学习微分方程和重积分时,我会先了解和理解基本概念,然后通过刻意练习来掌握解题方法,并在课后复习中加深对知识的理解。这些学习方法的应用使我在高等数学下册的学习中事半功倍。我认为,学习方法的培养是学习高等数学下册的必要过程,也是提高学习效率的关键。
通过学习高等数学下册,我认识到高等数学不仅仅是一门课程,更是培养学生综合素质的重要途径。通过学习高等数学,我不仅仅掌握了数学知识,更学会了思考问题、理解问题和解决问题的方法。高等数学下册的学习,培养了我对于数学的兴趣和学术追求。同时,我也反思了自己在学习中存在的不足,例如在理解概念和应用推导方面有待提高。在今后的学业中,我会更加注重培养自己的逻辑思维和实践能力,提高学习方法的灵活应用,以达到更好的学习效果。
总结起来,通过对高等数学下册的学习,我对于高等数学的知识体系、逻辑思维、实践能力和学习方法有了更深入的理解和认识。同时,我也发现高等数学不仅仅是一门学科,更是培养学生思维能力和解决问题能力的过程。通过学习高等数学下册,我不仅提高了自己的数学水平,也增强了自信和对学习的热爱。我相信,在今后的学习和人生中,我会继续努力,追求更高的数学境界和学术成就。
实用高等数学感想体会(案例19篇)篇十九
作为一门基础课程,高等数学承载着大多数理工科大一学生的压力和困惑。经过一学期的学习和思考,我对高等数学有了新的认识和体会。在这篇文章中,我将从课程内容、学习方法、教学过程、应用意义和学科培养等方面,分享我的心得体会。
首先,高等数学的课程内容是非常庞大和广泛的。它涵盖了微积分、数列和级数、多元函数和偏导数、微分方程等各种知识点。在这个过程中,我深刻意识到高等数学与初等数学的差距和难度。高等数学要求我们具备更严谨的逻辑思维、更扎实的数学基础、更高的抽象和推理能力。这些内容对于我们的学习和思考都是一次巨大的挑战,需要我们不断探索和学习。
其次,学习方法在高等数学中起着至关重要的作用。重视课堂听讲是学好这门课程的基本功。在课堂上,教师会讲解一些重点和难点知识,并给出一些实例和示范。我们要做的是认真听讲、做好笔记,并及时向教师请教疑难问题。此外,我们还要注重课后的巩固和复习。通过做大量的习题,我们可以对知识点进行巩固,培养一定的数学思维和解题能力。此外,还可以通过参考一些优秀教材和教辅书籍来扩充知识面。
再次,教学过程在高等数学中也非常重要。对于这门课程而言,教师的讲解和指导是非常关键的。在我们上课期间,我发现优秀的教师能够生动有趣地讲解抽象的概念和数学公式,能够引导我们思考问题的方法和思路,还能够给出一些实际问题应用数学的例子。这样的教学过程为我们理解高等数学的核心思想和应用意义提供了有力的帮助。因此,我们要积极主动地参与到课堂中,主动思考和提问。
再者,高等数学的应用意义是很大的。高等数学本身是为了解决实际问题而产生的一门数学学科。比如,微积分可以用来描述物体的运动和变化规律,应用广泛于物理学、力学、经济学等领域;微分方程可以用来研究自然界中的变化和规律,应用广泛于工程学、生物学、生态学等领域。高等数学的应用意义在于培养我们的抽象思维和解决实际问题的能力,使我们能够更好地应对未来的工作和学习。
最后,高等数学大一学期的学习使我深刻体会到数学学科的培养作用。高等数学的学习培养了我系统思维、逻辑思维、抽象思维和问题解决的能力。这些能力不仅在高等数学中有用,在其他学科和实际工作中也是非常重要的。高等数学不仅是我们专业学科的基础,更是我们日常思维和解决问题的工具。
综上所述,高等数学的学习需要我们具备一定的基础和思维能力,在学习方法和教学过程中要积极参与和思考,注重课后的巩固和复习。高等数学的应用意义和学科培养使我们深刻认识到数学在现实生活中的重要性和应用效果。通过不断地学习和思考,相信我们能够更好地掌握高等数学的知识和方法,为今后的学习和工作打下坚实的基础。