心得体会是我们在各种经历中获得的宝贵财富,值得我们珍惜和分享。以下是小编为大家精选的心得体会范文,供大家参考与借鉴。
最新三角形的内角和听课心得体会大全(16篇)篇一
三角形作为几何学中的基本图形之一,具有丰富的性质和定理。在学习中证明三角形的一些相关定理过程中,我有幸参加了一堂生动有趣的证明课程,深刻感受到了数学证明的魅力。这次听课让我对数学的理解更加深入,同时也培养了我逻辑思维和分析问题的能力。
首先,课程的开始引人入胜,老师分享了一些与三角形相关的有趣事例和实际应用,使得大家对于学习的内容产生了浓厚的兴趣。老师讲述了古希腊的数学家毕达哥拉斯的故事,他发现了一个重要的定理——毕达哥拉斯定理,即直角三角形的两条直角边的平方和等于斜边的平方。这个定理不仅为数学研究提供了基础,也为实际生活中的测量和构造提供了方便。老师还提到了有关三角形的实际应用,如建筑工程中的角度测量,航海中的航线计算等。这些实例的讲述让我对于三角形证明的学习有了更直观的认识。
接着,课程以三角形的性质和定理为主线,详细介绍了一些经典的三角形定理。我印象最为深刻的是三角形的角平分线定理。老师首先讲述了这个定理的原理和推论,然后以实际的例子进行了具体运用,这让我真正理解了定理的含义和应用。通过证明了这一定理,我逐渐认识到数学证明的严谨性和逻辑性,深刻体会到了数学证明的美妙之处。
在课程的过程中,老师还鼓励同学们积极参与,提问和回答问题。通过与同学们的互动,我学到了很多我以前没有了解到的知识。同学们纷纷分享了自己的思考和观点,从不同的角度来解释和理解问题,这为我提供了新的思路和思考方式。我也积极向老师请教一些疑惑,老师耐心解答并鼓励我多思考多探索。这样的交流让我在学习中不再感觉孤立,而是能够充分发挥自己的思维和创造力。
最后,课程以综合练习的形式结束。老师提供了一些需要进行证明的三角形问题,让我们自己动手去解决。这种让学生主动参与的方式,激发了我们的求知欲和学习兴趣。虽然在解题的过程中会遇到一些困难,但通过自己的思考和尝试,我逐渐找到了解决问题的方法。解决问题的过程不仅培养了我的逻辑思维和分析问题的能力,也让我对于数学证明的过程和方法有了更深入的理解。
通过这次课程,我对于三角形的证明有了更加全面和深入的认识。我明白了数学证明的重要性,它不仅是数学学习中的一种方法,更是一个锻炼思维和培养逻辑能力的过程。在以后的学习中,我会将这些知识应用到实际问题中,不断提高自己的数学能力。同时,我也会更加注重数学证明的学习,进一步拓宽自己的视野,培养自己的数学思维。通过不断努力和学习,我相信自己一定能够在数学领域取得更大的成就。
最新三角形的内角和听课心得体会大全(16篇)篇二
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;。
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态。
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
直尺、微机。
互动式,谈话法。
1、创设情境,自然引入。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)。
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1观察:三个内角拼成了一个什么角?
问题2此实验给我们一个什么启示?
问题3由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?
问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
引导学生分析并严格书写解题过程。
最新三角形的内角和听课心得体会大全(16篇)篇三
各位老师:
你们好,我是来应聘xx数学老师的x号考生,我今天抽到的试讲题目是《三角形的内角和》,下面开始我的试讲。
大家拿出事先准备好的三角板和量角器吧,同学们,你们现在用量角器来测量一下每一个三角形的角的度数,待会老师会进行统计。(转身画两个三角板模型),测好了吧,下面请靠窗的同学告诉老师你的测量答案。30度60度90度,非常好,那另一个呢?45度45度和90度,非常精确,请坐,相信咱们其他同学也一定能够测量出来。那么大家仔细观察一下,这两组数据有没有什么相似点。有的同学说都有个九十度,很好,还有呢,很好!有的同学发现了,说这三个角加起来是180度,非常棒。也就是这两个三角形内角和是180度。
可是是不是所有内角和都是180度啊,同学们,你们自己分别画一个不同的锐角、钝角、直角三角形,并且测量每个内角度数,并报给老师内角和。好,请第一排的女生起来回答,你的三个内角和是多少?179,180,180很好,大家知道为什么第一个不是吗?对,是因为毕竟有误差的存在,很棒。
下面大家按以前的安排分成六个组,交给你们一个任务,你们讨论一下,怎么来验证我们刚刚得出的这个结论呢?给大家十分钟时间来讨论。
老师看到很多同学都皱起了眉头,那老师来给大家一点小提示, 我们试着把三角形的三个角剪下来拼拼看。啊,很棒我看到前排的同学把三个角拼成了一个平角,大家知道平角多少度?180。那下面,大家可以动动手,任意再画几个三角形,用刚刚的方法看看能不能拼成一个平角?好,大家都非常积极,通过刚刚的验证,我们可以肯定:三角形的内角和是180度。
那接下来我们回到咱们刚开始上课的问题:为什么不能画一个有两个直角的三角形?谁愿意给大家说说?好,你举手最快,请你来说说。嗯,很好,因为有两个九十度的角加起来就是180度了, 不可能画出一个三角形,太棒了。请坐。
大家看大屏幕,这里有两个三角形,老师给分别给大家标出了其中两个角的度数,有没有同学告诉我剩下的度数啊?赶紧开动脑筋算算看。好,算好的同学大声告诉老师,第一个是30度,很棒。第二个50度,很棒,算的非常准确,看来大家上课都非常认真。
这堂课我们就上到这里,请大家回去完成课后习题1到3。好,下课!
最新三角形的内角和听课心得体会大全(16篇)篇四
在整个教学设计上谢老师充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。具体体现在以下几点:
1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。
2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。
3、善用验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——看一看。
4、善于引导巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,谢老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如第一关牛刀小试:给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;第三关过关斩将:让学生判断有两个小三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
5、有一定的拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,谢老师设计了这样一道题目:学了三角形的内角和后,你知道四边形的内角和是多少度吗?这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。
总之,本节课教学活动中谢老师充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。是一节非常成功的课。
文档为doc格式。
最新三角形的内角和听课心得体会大全(16篇)篇五
三角形是初中数学中必不可少的重点知识,而三角形内角和也是重中之重的一部分。此次,我学习了三角形内角和的证明方式,深刻认识到这一部分的重要性,并从中获得了一些有益的体验和心得。本文将探讨我在学习过程中所获得的这些经验和感悟。
第二段:学习过程。
在学习三角形内角和的证明中,我首先认识到三角形是一个基本的平面图形,由三条边和三个内角组成。内角和是三角形重要的数学性质之一,通常用于计算未知角度。在诸如三角函数等各种初等函数中都会涉及到三角形的内角和。因此,通过证明三角形内角和定理,我们可以更好地掌握数学知识,并有效地推断出三角形的各种性质。
第三段:证明方法。
在证明三角形内角和定理的过程中,有多种不同的证明方法。我们可以使用几何证明法、数学归纳证明法等方法,使得三角形内角和定理的成立更为显然。三角形内角和定理说的是:任何一个三角形的三个内角的和始终为180度,这个证明可以用许多方法来证明,在证明过程中要尽可能使用简单明了的方法,以便于理解。
第四段:学习收获。
通过学习,我认识到证明三角形内角和的定理是非常有益的,可以帮助我们牢固掌握三角函数中的基本概念,进一步提高数学水平。同时,学习三角形内角和定理可以让我们进一步认识到证明在数学中所扮演的重要作用,提高我们的逻辑思维能力和数学推理能力,从而更加深入地理解数学的各种概念和定理。
第五段:总结。
学习三角形内角和,不仅可以帮助我们更好地掌握三角函数中的基本概念,提高我们的数学水平,还可以提高我们解决问题和推理的能力。在学习三角形内角和定理的过程中,我们需要理解三角形的性质和相关几何知识,并学习不同的证明方法。只有通过不断的练习和努力,我们才能够更好地掌握三角形内角和定理以及更多的数学知识,实现数学优秀成绩的突破。
最新三角形的内角和听课心得体会大全(16篇)篇六
一堂好课不应是自始至终的高潮和精彩,也不必是高科技现代教育技术的集中展示。一堂好课不是看它的热闹程度,而在于学生从中得到了什么,它留给人们的应是思考、启示和回味。2月19日上午,在沈家门第一小学,我有幸聆听了赵斌娜老师执教的《三角形的内角和》一课,这就是一堂好课。
赵老师营造了宽松和谐的课堂气氛,让学生能主动参与学习活动,既关注了学生的个人差异和不同的学习需求,又注重了学生的个体感悟,强调情感体验的过程。确立了学生在课堂教学中的主体地位,使学生在学习过程中既调动了积极性,又激发了学生的主体意识和进取精神。学生在自主、合作、探究的学习方式中互相激励,取长补短,能团结协作,最终形成了相应能力;同时培养了学生刻苦钻研,事实求是的态度。
教学过程是一堂课关键中的关键,新课标提出数学教学是数学活动的教学,而数学活动应是学生自己建构知识的活动。教师让学生“在参与中体验,在活动中发展”。本节课有操作活动、自主探索与合作交流、应用活动三个方面,下面我重点谈谈操作活动。
1、在实践材料上下了工夫。
操作实践的材料是精心选择的,老师为学生准备了用卡纸制作的形状、大小、颜色不同的三角形各几个,这样学生在操作时候,便于选择、测量、拼摆、观察、思考问题,而且这些三角形颜色醒目、比较大,学生应用起来很得手,操作的材料和学生的动手实践配合恰当。
2、找准时机让学生进行实践操作。
本节课安排了两次操作活动:一是在得出三角形内角和规律前进行实践操作,促使学生在实践操作中探究新知识;二是在初步得出规律之后,让学生通过实践操作来验证新知识。帮助学生清楚地认识到第一次出现内角和偏差的原因是测量误差造成的。给学生提供的这两次动手实践的机会,不仅提高了操作的效果,更重要的使“听数学”变为“做数学”。促使学生在“做数学”的过程中对所学知识产生了深刻的体验,从中感悟和理解到新知识的形成和发展,体会了数学学习的过程与方法,获得数学活动的经验。
3、把实践操作和数学思维结合起来。
学生通过实践操作获得的认识是一种感性的认识,是外在的直观的印象。在本节课中赵老师在学生实践操作的基础上引导学生把动手实践和数学思维结合起来,先让学生思考出可以用量、撕和拼的方法来推导三角形内角和的度数,接着引导学生说出量的方法,最后让学生实际测量。采取边说边操作,边讨论边操作的方式,让手、脑、口并用,在操作和直观教学的基础上及时对三角形内角和规律进行抽象概括。做到边动手,边思考。同时学生获得了一种数学思想和方法,学会了解决一些类似的一系列的问题,提高了实践动手的有效性。
最新三角形的内角和听课心得体会大全(16篇)篇七
学习三角形内角是数学学习中的基础知识之一,三角形是几何学中的重点内容之一。通过学习三角形内角,可以帮助我们更好地理解三角形的性质,提高数学思维能力。在学习的过程中,我深受启发,也积累了一些心得体会。
首先,我们来了解一下三角形内角的定义和性质。三角形内角是指三角形内部的角度,任意一个三角形的三个内角相加总是等于180度。这个性质被称为三角形内角和定理。基于内角和定理,我们可以进一步推导出三角形的其他性质,比如角平分线、垂直线等概念。通过理解和应用这些性质,我们可以更好地解决与三角形相关的问题。
第三段:学习方法和技巧。
在学习三角形内角的过程中,我们也可以运用一些学习方法和技巧,来提高学习效果。首先,要熟练掌握三角形内角和的计算方法,包括直角三角形、等腰三角形和一般三角形的特殊情况。其次,要多做练习题,通过实际操作来巩固知识。同时,还需要理解和运用三角函数,来解决与三角形内角和相关的实际问题。最后,要注重学习的整体性,将三角形内角和与其他知识点相结合,形成知识网络。
学习三角形内角不仅是为了解答与三角形相关的问题,更重要的是培养和提高我们的数学思维能力。学习三角形内角能够锻炼我们的逻辑思维、推理能力和问题解决能力。三角形内角和定理不仅仅适用于三角形,还可以推广应用到其他几何学相关知识中。通过学习三角形内角,我们可以更深入地理解几何学的基本概念和原理,提高我们的数学素养。
通过学习三角形内角,我深刻地认识到数学是一门自洽、逻辑严密的学科。三角形内角和定理的证明过程非常复杂,需要我们严密的思考和理解。而且,学习三角形内角还要求我们具备良好的空间想象力和几何直觉。通过不断练习和思考,我渐渐地培养起了这些能力。此外,学习三角形内角还让我慢慢体会到数学的美和魅力,它是一门融思考、推理和创造于一体的学科。通过学习三角形内角,我不仅仅掌握了一种方法,还获得了更深刻的数学认识,对数学产生了浓厚的兴趣。
总结:
学习三角形内角是数学学习中的重要内容之一,通过学习三角形内角,我们可以更好地理解三角形的性质和解决与三角形相关的问题。在学习过程中,我们可以运用一些学习方法和技巧,同时也要注重培养整体性的学习能力。学习三角形内角不仅仅是为了解答问题,更重要的是提高数学思维能力和数学素养。通过学习三角形内角,我们可以感受到数学的美和魅力,培养出对数学的兴趣和热爱。
最新三角形的内角和听课心得体会大全(16篇)篇八
三角形内角和是初中数学中的基础知识,但是对于许多学生来说,证明三角形内角和公式却是一件困难而且枯燥的事情。在学习这一内容中,我深刻地感受到,证明一个公式并不只是从书上背下来,更要理解并掌握其中的思想方法。以下,我将围绕着三角形内角和公式的证明,分享我的体会和经验。
三角形内角和公式是指:三角形的三个内角之和为180度。由于这个公式适用于所有的三角形,因此在数学中具有重要的作用。首先,我们需要认真研究三角形内角和公式的证明方法,这里我总结了以下几点。
第二段:使用三角形定理。
三角形定理包含了许多三角形的基本性质,也是证明三角形内角和公式的载体。我们可以利用角的对应原理和三角形的两边之和大于第三边等定理来推导内角和公式。其中,利用角的对应原理,可以得到“三角形内有一个角是等于一个已知角度的其它角的减去一个知道的角的度数和”的规律。
第三段:使用平行线等几何知识。
使用平行线等几何知识,也是证明三角形内角和公式的一种常用方法。我们可以通过画出三角形的外接圆,并在圆的周围添加三角形辅助线,使其构成一组等腰三角形或等边三角形。这唤醒了我们的几何直觉,让我们对三角形的内角和点明了正确的方向。
第四段:运用向量微积分。
向量微积分是一种高级数学分支,它可以用来证明三角形内角和公式。通过向量内积和向量外积的知识,我们可以构造出符合三角形内角和公式的等式。这种方法比较抽象,需要有较好的向量代数知识储备,不过它的优势在于可以拓展到高维空间的几何学中。很多时候,我们可以借鉴此方法,并将向量微积分知识灵活运用。
第五段:总结体会。
经过对三角形内角和公式的种种分析,我们发现证明三角形内角和公式并不是一件难事,关键在于我们有没有找到合适的方法分析问题。对于初学者来说,掌握数学原理的语言和思想,需要一定时间和努力。在学习的过程中,我们不能被自己的误区牵着鼻子走,要时刻警惕不D掉思考的本质。最后,解决一道数学问题,可以从多个角度去入手,而不是固守一种方法。坦诚地说,这是一种思维习惯和生活态度的转变,需要我们在多维度、多领域的学习中不断地尝试。
最新三角形的内角和听课心得体会大全(16篇)篇九
三角形是数学中的基础概念之一,其性质和证明方法是数学学习的重要内容。在听课过程中,我深感到了三角形证明的重要性和挑战性。通过老师的讲解,我对三角形的性质和证明方法有了更加深入的理解,并且认识到了证明的思维方式和逻辑。以下是我对这次听课心得的体会。
第一段:引入三角形的重要性和挑战性(200字)。
三角形是数学中的基础概念,是几何学的重要研究对象之一。三角形的性质和证明方法是数学学习的重要内容,不仅在数学领域有重要应用,也在其他学科中具有广泛的应用价值。然而,三角形的证明常常需要运用多种性质和方法,其复杂性和抽象性对学生来说是一种挑战。因此,对三角形的证明进行深入学习和理解是我们提高数学能力的关键所在。
第二段:听课过程中对三角形的性质有了更深入的理解(200字)。
在听课过程中,老师通过举例、推理和讲解,详细介绍了三角形的各种性质和相应的证明方法。我了解到了三角形的内角和是180度,三边之和大于第三边等基本性质,并且学会了如何使用等腰三角形、全等三角形和相似三角形进行证明。通过具体的例子和推理,我对这些性质有了更深入的理解,认识到它们不是单纯的数学定理,而是真实世界中存在的普遍规律。
第三段:证明的思维方式和逻辑(200字)。
证明是数学中的一项重要任务,也是培养学生逻辑思维和分析能力的重要手段。在三角形的证明过程中,我认识到了证明的思维方式和逻辑。首先,要观察出问题中的关键性质,明确证明的目标。其次,选择合适的证明方法,尽可能运用已知的性质和定理。然后,进行推理和演绎,逐步推导出结论。最后,对证明过程进行总结和思考,检查是否有遗漏或错误。这种思维方式和逻辑对解决其他数学问题也是有借鉴意义的,能够提高学生的逻辑思维和问题解决能力。
第四段:通过反例归纳和举一反三的方法加深理解(200字)。
在证明过程中,有时候我们可能会遇到一些和三角形性质相违背的特殊例子,这时我们可以运用反例归纳的方法加深理解。通过构造特定的三角形形状,找到反例以证明特定性质不成立,从而更好地理解这些性质的适用范围。另外,我们还可以通过三角形证明中的思路和方法,推广到其他问题中,实现举一反三的效果,扩大数学思维的应用领域。
第五段:总结和展望三角形证明的深入学习(200字)。
通过这次听课和学习,我对三角形的性质和证明方法有了更深入的了解。我明白了三角形证明的重要性和挑战性,以及证明思维的方式和逻辑。这种学习对我今后的数学学习和问题解决能力都具有积极的影响。我希望通过更多的实践和学习,能够不断提高自己的证明能力,掌握更多的证明方法,并将其应用到更广泛的数学领域中。只有不断探索和实践,我们才能在数学学习的路上不断前行。
最新三角形的内角和听课心得体会大全(16篇)篇十
首先,我们来了解一下三角形内角和的概念。三角形内角和指的是一个三角形内的三个角的角度之和。也就是说,无论一个三角形的大小和形状如何,其内角和的总和是不变的。对于这个概念,我们需要进行一些证明,并从中得出一些体会。
一、首先是证明三角形内角和的公式:我们可以将一个任意的三角形划分为两个三角形,这样就可以得到2个内角和相等的三角形。根据这两个三角形的性质,它们的内角和分别为180度。因此,原先的三角形的内角和等于2个相同的三角形内角和之和,即2×180度。因此,三角形的内角和公式为:180度×(n-2),其中n为三角形的边数。这是三角形内角和的公式,也就意味着,无论三角形的大小和形状如何,其内角和的总和是不变的。
二、接下来,我想谈谈这个公式所蕴含的性质。这个公式表明了任意一个三角形内角和都是一个定值,这意味着我们在处理与三角形有关的问题时,我们可以依据这个公式来计算。同时,我们也可以通过这个定值来判断三角形是否存在。如果我们知道三角形的任意两个角的度数,我们就可以通过计算得出第三个角的度数,如果这个度数满足三角形内角和公式,那么这个三角形就是存在的。总之,这个公式为我们解决与三角形相关的问题提供了一个非常有效的工具。
三、其次,我们来看一下三角形内角和的一些特殊情况。如果我们将一个三角形变形成一条直线,那么这条直线上的角的度数之和显然是180度。这也就是说,当一个三角形的一个角的度数等于另外两个角的度数之和时,这个三角形就成为了直角三角形。这个特殊情况提示我们,任何一个角的度数都不能超过180度,超过这个范围就不再是三角形。
四、此外,我们还要关注三角形内角和的一个重要性质。在一个任意的三角形中,最大的内角所对应的边是最长的,而最小的内角所对应的边则是最短的。这提示我们,我们可以通过测量三角形的三个角的度数来判断三角形的大小和形状。如果一个三角形的度数都相等,那么这是一个等边三角形。如果只有两个角度相等,那么这是一个等腰三角形。通过这些性质,我们可以进行更复杂的三角形的处理。
五、最后,我想强调一个重点,那就是,我们需要掌握三角形内角和公式的证明过程。如果我们只是仅仅记住了这个公式,但是不理解其意义和原理,那么我们将很难理解和解决与三角形相关的问题。因此,在我们学习三角形内角和公式的过程中,我们需要认真学习其证明过程,并从中理解和掌握重要的原理和性质。只有这样,我们才能够真正掌握这个公式,以及它所包含的深刻含义。
最新三角形的内角和听课心得体会大全(16篇)篇十一
大家好!
今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。
(一)教学内容的地位
本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。
(二)教学重点、难点:
三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。
另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。
突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。
基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。
(一)知识与技能目标:
会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
(二)过程与方法目标:
经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。
(三)情感、态度价值观目标:
通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。
七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。
根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。
我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。 定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5. ‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。
本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观 ,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。
本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点 ,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。
新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:1、关注学生探索结论、分析思路和方法的过程。2、关注学生说理的能力和水平。3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。
以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!
最新三角形的内角和听课心得体会大全(16篇)篇十二
“三角形的内角和”是人教版小学数学四年级下册第五单元第四节的内容,“三角形的内角和”是三角形的一个重要性质。本课教学内容不算多,学生只需要翻看课本就会知道三角形的内角和是180°,但是陈丽老师并没有让学生这样做。“数学学习的过程实际上是数学活动的过程”。课程标准要求我们“将课堂还给学生,让课堂焕发生命的活力”,要求我们“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”在教学中,陈老师力求探究,将教学思路拟定为“创设情境,激趣引题——自主合作,探究新知——交流释疑,归纳总结——拓展应用,反思升华”四个环节,努力构建探究型的课堂教学模式。具体体现在以下几个方面:
课一开始,陈老师创设了一个实践操作的活动情境:让学生画一个含有两个直角的三角形。很显然三角形是画不出来的,学生同样也不知道画不出来。简单的活动激活了学生的思维,让他们产生了问题:是不是三角形的角有些什么秘密呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。
在教学中,陈老师巧妙运用“猜想、验证”的方式引导学生进行自主学习和探究活动。学生大胆猜想三角形的内角和是180°,让学生对问题形成了统一的认识,使后边的探索和验证活动有了明确的目标。这个时候,陈老师就把课堂大量的时间和空间留给学生,在学生交流探究设想和打算采用的方法后,放手让每个同学自主参与验证活动,在经历观察、操作、分析、推理和想象活动过程中解决问题,同时发展空间观念和论证推理能力。验证的具体过程为:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,结论的形成不缺乏科学性。这个环节的设计更重要的是变“听数学”为“做数学”,让学生在“做中学”。
学生在活动中体验,在交流中消除疑惑,获得新知。这节课生与生、生与师的交流不仅仅停留在知识的层面上,陈老师还引导学生对获得知识所用的方法进行了总结,加强了学法指导。
课程标准提倡练习的.有效性。本节课的练习设计陈老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。两个小三角形拼成一个较大的三角形互动练习让学生进一步理解任意三角形的内角和都是180°;后面的练习设计从图形到文字,由一般到特殊;“开心一刻”更是把学生带到无穷的学习乐趣之中。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
两点建议:
2、学生的猜想结果都是180°,这时老师是否可以反问:你们是怎样知道的?便于学生的学习活动更流畅的进入下一个环节。
总之,我个人认为陈老师对“四步教学法”模式的把握是成功的,学生在这种课堂教学模式下的学习是自主的,是活动的,也是快乐的。
文档为doc格式。
最新三角形的内角和听课心得体会大全(16篇)篇十三
1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。
2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。
3、善用验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的`数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让(转自数学吧http://)每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——看一看。
4、善于引导巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,谢老师非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如第一关牛刀小试:给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;第三关过关斩将:让学生判断有两个小三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
5、有一定的拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,谢老师设计了这样一道题目:学了三角形的内角和后,你知道四边形的内角和是多少度吗?这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。
总之,本节课教学活动中谢老师充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。是一节非常成功的课。
最新三角形的内角和听课心得体会大全(16篇)篇十四
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
最新三角形的内角和听课心得体会大全(16篇)篇十五
一、构建新的课堂教学模式。
传统的教学往往只重视对结论的记忆和模仿,而这节课老师把学生的学习定位在自主建构知识的.基础上,建立了“猜想——验证——归纳——运用”的教学模式。
二、培养学生勇于猜想,大胆创新的精神。
教学中赵老师遵循的基本教学原则是激励学生展开积极的思维活动.先创设猜角的游戏情景,让学生对三角形的三个角的度数关系产生好奇,引发学生的探究欲望.
三、为学生提供了大量数学活动的机会,让学生真正成为学习的主人。
“给学生一些权利,让他们自己选择;让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让学生自己飞翔.”这正是课堂教学改革中学生的主体性的表现。所以在这节课中赵老师树立了数学教学为学生服务,创设有助于学生自主学习,合作交流的机会,通过想办法求三角形的内角和这一核心问题,引发学生去思考,去探究.这样学生的潜能的以激活,思维展开了想象,能力得以发展.
四、给学生一个开放探究的学习空间.
培养学生的问题意识是数学课堂教学的核心问题,所以课堂上学生的学习过程就是解决问题的过程,当一个问题解决完后又引发出新的问题,使学生体会到成功的喜悦,使数学课堂充满挑战.所以课堂上老师没有因学生发现三角形内角和是180度而罢休,然后用一个大的三角形剪成两个小的,用两个小的拼成大的内角和延伸,使学生悟出规律,这样学生带着问题在课后向更高的学习目标继续探索,一追求更大的成功。
一堂好课不应是自始至终的高潮和精彩,也不必是高科技现代教育技术的集中展示。一堂好课不是看它的热闹程度,而在于学生从中得到了什么,它留给人们的应是思考、启示和回味。
最新三角形的内角和听课心得体会大全(16篇)篇十六
通过猜想、验证,了解三角形的内角和是180度。在学习的.过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以。
计算的结果为准。
完成想想做做的题目。