范文范本是具有一定指导作用的,可以帮助我们更好地理解和掌握语文知识。欢迎大家认真阅读以下这些范文范本,希望能够帮助到你们的写作。
数学建模课程论文(精选14篇)篇一
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
一、新课的引入需要发挥教师的作用。
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用。
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用。
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导。
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
数学建模课程论文(精选14篇)篇二
【论文摘要】本文指出了专科院校《数学建模》教学改革必要性,分析学校情况,对教学目标、教材编制、课程设置、教学内容及方法上都根据专业不同采用分层教学,突出专科特色和专业特色,达到了较好效果。
【论文关键词】数学建模专业特色分层教学。
数学建模课程的教学研究是数学应用教育的一个重要课题,它是一种崭新的教学模式、教学方法,是培养学生数学应用能力、创新能力和科研合作能力的一个较好的平台,高职专科学校的数学开设时数、难度、广度与理工院校不同,学生基础情况也不同,所以要研究具有高职专科特色的数学建模教学模式。
1教学模式内容。
1.1确立数学建模教学目标(目标分层)我校具有师范类数学专业、理工科专业、经济类专业等专业开设数学课程,在数学建模教学中对于不同专业设立不同的教学目标。
1.1.1师范类数学专业的教学目标树立“数学具有广泛应用性”信念和数学应用意识,具备一定的数学建模能力,使学生将来从容胜任中小学数学建模教学。
1.1.2理工、经济类专业教学目标树立数学应用意识,具备数学建模能力,培养数学应用能力和创新能力,使其毕业后能更好地应用数学为其从事的本专业的研究与工作服务。
1.2教材要适合不同培养目标,具备专科特色和专业特色。
1.2.1教材来源现在教材多是综合各类大学或理工科大学(多为本科学校)的教材,由于我校是专科类学校,数学课程开设的门类少、学时少,难度、广度远比不上这些本科院校;学生的数学基础和接受能力也不能与这些学校相提并论,所以教材不能采用不符合实际照搬照抄方式,我们采用以下方式:
1)借鉴:精心鉴别吸收本科院校数学建模教材以及其他文献中符合专科特点的数学建模材料。
2)研究吸收补充新素材根据生产生活实际,把学生感兴趣的现代社会生活热点问题吸收进来;选取自然界中奇妙而令人感兴趣问题;选取身边人们习以为常且容易忽视而结果又出乎意料问题;把近几年来全国大学生数学建模竞赛题(专科组的竞赛题)也逐步补充进来。
1.2.2根据不同专业情况选用素材,内容呈现多层面和多元化。
1.2.2.1师范类数学专业师范类《数学建模》增设了中学数学建模内容,包括教学方式、方法以及历年中学数学建模竞赛题目选讲内容。师范学生要想在日后胜任中学数学建模教学工作,他们不但要掌握系统的数学建模方法与技巧,还要掌握一套较为科学、有效的中学数学建模教学与学习方式和方法,还要熟悉近年来中学数学建模的题目。
1.2.2.2理工类、经济类各专业选取的素材多为生产工程领域和经济类的数学建模问题,这些问题涉及各个专业的问题,突出了多学科的交叉和综合,开拓学生的视野,扩展他们的知识面。
1.3根据专业确立《数学建模》课程设置,采用不同方式进行教学。
1.3.1师范数学专业我校规定师范数学专业的《数学建模》课程为必修课,它包括《理论学》和《实训课》,课时比为1∶1,目的是注重学生实际建模能力培养,为此提供时间和空间。理论课中的教师为主导,学生为主体,以教材为主线,围绕教材章节,教师归纳讲解不同类型数学思维方法和常用的数学思维方法,讲解数学建模的步骤。教师起到引导和示范作用。实训课程中注意培养学生的实际建立数学模型的实战能力。学生分为小组活动,一般三个人一组。教师在理论课提前布置与本节相关数学建模题目,在课后由这些小组成员共同查资料,互相启发、共同讨论并撰写出论文。上实训课时,围绕某一数学建模问题,各小组可以踊跃发表见解,介绍本组的解题思路和方法,其他组可以补充、修改,或提出质疑,也可以另辟新径采用不同的建模方法。最后由教师点评各种方法的优势和不足。
1.3.2理工科、经济类各专业我们采用选修课形式开设《数学建模》课程,深入浅出讲解各种数学思维方法在生产实际中的应用,主要是开拓学生视野,激发学生学习数学的热情,使学生感受到生活生产中数学无处不在,培养学生应用数学方法去分析解决问题意识和能力。教师精选学生力所能及的数学建模题目,由学生在课余时间完成。
1.3.3开辟数学建模的第二课堂,建立数学建模实验室每年我们吸收各个专业的学生到数学建模实验室进行研究工作,选拔培训学生参加全国大学生数学建模竞赛,让学生也进行高水平的数学建模实践演习。不同专业的学生组成一组进行实训和竞赛,不同专业的学生的知识和能力可以互补,发挥了每个学生的特长,如计算、分析、编程、写作等;各门学科的交叉和综合运用,开阔了学生视野、扩展了知识面,激发了他们探索和研究的兴趣和欲望,也使得他们分析问题和解决问题的思维触角更加敏锐、灵活,思维空间更加广阔。
1.4采用灵活多样的评价成绩方法数学建模教学改革以往评价学生成绩的方法,评定成绩的方法分为三部分:一是平时小组成绩;二是平时队员表现;三是论文成绩。评价学生更加注重对学生分析和建立模型过程考查,采用平时以小组为单位,小组成员荣辱与共的小组计分法。这种方法可以促进小组成员团结协作互相启发,互相质疑、共同提高;同时教师可以考查同一小组不同成员在平时建模能力表现,例如建模方法、灵活性,是否勇于创新、敢于标新立异,鼓励学生另辟新径,用多种角度去分析问题,对于勇于质疑,勇于提出不同方法的学生加分。最后在学期未教师布置数学建模题目,给出几天时间由学生建立数学模型并形成论文形式上交,教师按一定标准记入成绩。
1.5改革以往教学方法,注重数学知识来源、发现和探究过程,注重对学生的创新意识和创新能力的培养。以往数学课程注重数学逻辑体系、定理规则及计算技艺,而忽视了数学知识它的来源,发现和探究过程。我们的学生面对考试可能是佼佼者,但面对活生生的实践问题可能就束手无策。项武义教授称之为把姜女西施置于x光透视,所看面的只能是一幅骨头架子,毫无美可言,学生连看的兴趣都没有,认为数学太枯燥、抽象,没实际应用价值,它离我们生活生产很遥远,谈不上更好地学习数学,更谈不上兴趣和创造。我们改革以往教学方法,注重数学知识来源、发现和探究过程,注重对学生的创新意识和创新能力的培养。
1.5.1我们在数学建模教学中,讲解数学思维方法时都要从实际问题中导入,讲清楚每个数学分支的思维方法的背景和特征,注重知识的来源和应用范围。
1.5.2在建模教学中教师引导学生从多角度去观察和分析问题,探索发现新的解决方法,激发学生的'好奇心,点燃他们胸中的求知欲望,使他们感受到数学家发明研究时的火热的思考。教师制造平等的讨论研究氛围,鼓励学生互相讨论探究,互相启发、互相补充、互相置疑,不断修改补充数学模型,学会分析和评价模型。教师鼓励学生大胆猜想,敢于另辟新径、标新立异,培养学生的创新意识和创新能力。
2实施效果。
2.1通过数学建模的学习,学生对数学认识发生了质的变化,具备了应用意识和创新意识。通过改革教学方法,注重建模的收集资料、分析思维过程的演练和运用讨论探究式学习,学生对数学产生深厚兴趣,认识到数学处处在我们身边,利用好它可以解决许多生产实际问题,学生从数学建模中体验到从来未有过的当初数学家发明创新时火热的思考,这种返璞归真的探究过程培养了学生的应用数学的意识和能力。建立模型过程中面对活生生的实际问题,教师鼓励学生从多角度观察问题,并用多种数学方法解决问题,培养了学生的创新意识和创新能力。
2.2根据不同的专业设置不同的数学建模教学模式,使得不同专业学生呈现不同的特色。数学专业学生在毕业论文写作中都得益于数学建模学习中论文写作,很多学生做论文题目就是数学建模方面论文,具备了建模能力和论文写作能力;师范类数学专业不仅具备了数学建模的能力,还熟悉中小学数学建模题目类型和教学方法,使得学生毕业后能从容胜任中小学的数学建模教学工作。非数学专业学生接受了数学建模培训和锻炼,开扩了他们的视野,使他们领略到了各门学科交叉和综合运用的价值,为他们提供了培养创新能力和科研合作能力的一个较好的平台。通过数学建模,这些学生的毕业设计、毕业论文中能自觉地应用数学思维方法分析,解决问题,论文的写作能力得到提高。
2.3我校是同类院校中最早参加全国大学生数学建模竞赛并获奖学校之一,从至今,每年组织学生参赛,曾获国家级二等奖、省级一等奖、二等奖、三等奖,每年都有获奖学生。
【参考文献】。
数学建模课程论文(精选14篇)篇三
数学建模就是用数学语言描述客观系统的过程.根据参加数学建模竞赛和授课经验,本文分析了数学建模课程与当代大学教育之间的关系.根据当代大学特点,给出了数学建模的'授课方法以及具体的实施方法.本文将数学建模活动划分为三个阶段,经过逐个阶段的教学,学生可以学会如何对模型进行数学形式的刻画和构造,并且提高学生的应用能力、创新能力及科研论文的写作能力.
作者:刘建国陈兴文作者单位:刘建国(上海理工大学复杂系统研究中心,上海,93)。
陈兴文(大连民族学院教务处,辽宁,大连,116600)。
刊名:中国科技博览英文刊名:zhongguobaozhuangkejibolan年,卷(期):“”(1)分类号:u01关键词:数学建模创新案例教学大学教育
数学建模课程论文(精选14篇)篇四
摘要:思想道德修养与法律基础课程是高校思想政治理论课程的主要组成部分,也是高校思想政治教育体系的主要渠道和主要阵地,思想道德修养与法律基础课程主要对大学生在思想道德观以及法律基础知识上起到塑造与完善的重要作用。
关键词:互联网;思想道德修养与法律基础;体验式教学;策略。
一、引言。
思想道德修养与法律基础课程对大学生高尚人格的形成、大学生社会责任感的增强、大学生法律意识的形成具有重要的作用,该课程也是高校思想政治理论课的重要课程,显示出国家对培养人才的重视,以及高校在培养人才上的重视程度。随着素质教育的推进,以及国家对培养全面发展人才的要求,高校在教学方法以及教学内容上面进行了大刀阔斧的改革,然而效果并不明显。尤其是思想政治理论教学方法的好坏直接关系到教学质量的高低,也直接影响到思想政治理论学生的塑造与影响。在发达的互联网时代,传统与单一的灌输式教学方法,已经不能适应时代的要求,高校思想政治理论课程在教学方法方面的改革显得尤为迫切。
二是,互联网上丰富的内容给思想政治理论课程带来了挑战,原有的教学内容显得捉襟见肘,互联网上多元化的信息资源,更能够激发起学生的学习兴趣;三是以互联网为载体的信息传递方式给传统的教学带来了极大的挑战,传统的老师讲、学生听的授课方式已经完全不能够适应互联网时代学生发展的需求,教师应该开展多元化、多种方式的教学来感染学生、激发学生的兴趣。体验式教学是一种能够让学生参与课堂,并且尊重学生的主体地位,让学生产生兴趣的情感,学生进行情感共鸣,他能够积极调动学生在道德情感以及道德行为上的塑造。
因此,体验式教学是实现学生知行统一的有效渠道,它也可以增强学生之间的合作学习以及情感互动,对高校思想政治课程教学改革、提高教学效果具有重要的作用,也是当前高校思想道德修养与法律基础课程应对互联网对该课程提出挑战的主要解决办法。
二、网络对思想道德与法律基础课程产生的影响。
三是互联网的出现,使得思想道德修养与法律基础课程教学更加凸显了学生的地位。网络的出现,使得教育主体与客体之间的地位趋向平等,从而突出了学生的主体地位。比如,在互联网上进行信息的共享,可以自由平等的获取,学生可以拥有主动权,教师不再是权威者,而与学生的地位趋向于平等。同时,网络互动性的特点,更加容易激发学生的学习欲望,为大学生进行自我教育,自我塑造自我学习,提供了更加开阔的空间与平台,教师的地位从讲授转换到了引导。
然而,互联网的出现也对思想道德修养与法律基础课程的教学产生了一定的负面影响,主要有以下几个方面:
一是大学生过于依赖网络。据调查,我国大学生是互联网使用的主体,这给高校思想道德修养与法律基础课程的教学提出了极大的挑战,学生可以通过互联网了解各种事情和信息,而教师的讲授则难以起到太大的知识传递的作用。但是,网络上的信息不仅有积极向上的,还有消极扭曲的,如果大学生长期沉迷于网络,则很容易将一些鱼龙混杂的信息深入自己的道德观念中,这不仅会削弱大学生对道德思考的问题,还会给大学生的人格形成带来阻碍,很容易让大学生对自身现实生活与网络的虚拟性形成混淆,充满误解,从而形成不健康的人生观与价值观。
二是互联网环境下高校思想道德修养与法律基础课程的.教师缺乏对学生进行积极的引导。主要是由于部分教师对于互联网以及互联网环境下体验式教学存在一定的偏见,对其不完全了解,忽视了课堂中学生的情感体验,只是按照自己的思路进行教学,没有将学生所需要得到的东西融入课堂之中,因此起不到道德教育的作用。
三、利用网络环境提升思想道德与法律基础的教学策略。
第一,高校思想道德修养与法律基础课程的教师,应该加强学习和运用体验式教学方法,树立以学生为本,运用体验式教学的理念,在互联网日益发展的今天,高校思想道德修养与法律基础课程教师应该转变教学观念,让互联网成为一种新的教学方式,让体验成为学生学习的主要方式,让学生在参与体验中真正了解感受,并且塑造积极向上的思想道德修养。二是,高校思想政治教师应该学习和提高运用网络信息的技能,为了更好的利用互联网的优势,高校教师首先应该整合提高自己的互联网修养,能够敏锐地接受互联网信息,并且形成较强的信息处理能力,将这种能力完全融入到思想道德修养与法律基础课程的教学中,将网络优势与体验教学的优势整合发挥,取长补短,促进教学效果的提升。
第二,高校思想政治教师应该为学生创造丰富的体验教学模式。比如,课堂讨论、讲座、演讲、案例教学等等,都是有效的体验教学模式。课堂讨论可以增加师生之间学生之间的互动交流,具有较强的互动性以及合作性,而且具有互补性,通过课堂讨论,可以提高学生课堂参与度,并且升华师生的情感,达到体验教学的目的。演讲是一种更为真切的体验教学方式,学生可以将自己的真情实感,自己个人对思想道德修养与的见解敞开心扉的演讲出来,应该会更加具有吸引力,更加具有情感。
参考文献:
[1]徐雁.基于网络环境下高校思想政治理论课教学模式的创新[j].中国成人教育.(12).
[2]佘双好.关于思想政治理论课体验式教学的思考[j].思想教育研究.2012(04).
[3]萨日娜,原丽红.网络普及化对高校思想政治理论课课堂教学的挑战[j].中国成人教育.2012(05).
[4]邱靖.网络对高校思想政治理论课教学的挑战及对策思考[j].教育探索.2011(11).
数学建模课程论文(精选14篇)篇五
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立。
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例。
四、结语。
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
数学建模课程论文(精选14篇)篇六
摘要:运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
关键词:数学建模;运筹学;教学实践。
4结束语。
参考文献:
[1]刘仁云.数学建模方法与数学实验[m].北京:中国水利水电出版社,2011。
[9]姜启源,谢金星,叶俊.数学模型[m].4版.北京:高等教育出版社,2011。
[10]胡运权.运筹学基础及应用[m].6版.北京:高等教育出版社,2014。
文档为doc格式。
数学建模课程论文(精选14篇)篇七
多年以来,高职数学的课堂教学被学生认为是抽象、单调和枯燥的。在高职数学教学中,几支粉笔一堂课的现象还相当普遍。尽管许多教师都意识到了现代教育技术的重要性,但是很多时候,教学条件的改变是不尽如意的。现实中存在的教法过于陈旧死板,不便于理解和接受。另外,由于高职数学教学有它自身的特点,传统的教学方式还不能完全丢弃,因此,如何将传统的教学方式和现代教育技术做到有机结合是需要研究的问题。
二、高职数学教学中的对策与建议。
1.结合专业课内容,着重培养学生应用能力。
高职数学教学内容必须与专业相结合。由于专业趋向专门化,各专业对数学的需求也必然不同。所以,高职院校的数学教学和教材的选用有必要结合本专业的知识进行设置,针对不同的专业,给出适应专业需要的教学内容。为了更好的服务专业、适应专业、融于专业,必须对传统的高职数学教学内容做必要的取舍,使学生拥有与专业培养目标紧密结合的高职数学知识,突出培养专业人才的能力。它的主要特点是体现专业性,其内容要体现一个“用”字,让学生感受到学习数学是发展的需要。授课方式相对灵活,可以采用“讨论式”或“双向式”教学,也可由某一专业领域实际问题的数学应用展开。从某种意义上说,这样做是符合培养应用型人才的需要。
2.取舍教学内容,做到重点突出。
由于高职院校办学特点所决定的,高职数学的课程学时减少是一种普遍现象。在这种情况下,高职数学教学要结合高职院校的特点,适当增删内容,保留传统教材的基本结构,更新部分概念和理论的表达形式,只有在有限的课时环境下调节好难易度、把握好重难点,做到教学内容重点突出,才能将高职院校的数学教学提升到一个更高的台阶,教学效果才能有所改善。
3.培养自学能力,重视学法指导。
当同学们进入到高职院校以后,以往那种仅靠教师讲解、题海战和反复训练的情况已经不存在了,更多的时候还是要靠学生自己来合理支配学习时间;所以,应当着力培养高职生自学能力。不少学生很不适应高职数学教学中教师讲授快节奏的教学方式,依然留恋中学里所接受的“题型教学”、“题海战术”,但是,大学更加强调学生在学习中的独立思考和自学能力。所以,学生要转变观念,尽快适应中学到高职院校的'教育教学模式的转变,教学内容的转变,争取做到合理支配学习时间,将高职数学能够做到学以致用。
4.运用合理的教学方法。
高职数学教学也有必要打破传统教学法,开拓教学新思路,让教师“变主动为被动”,学生“变被动为主动”。教师可以采用灵活的教学互动式教学方法,使学生通过教师的讲授、小组的讨论,提高自信心、主动性和分析思考能力,使每个学生增强学习兴趣。另外,教师有必要以社会需求为基本出发点,紧扣专业需求,充分了解学生专业及将来从事岗位的有关情况,制定授课目标,达到学生满意的授课结果,使授课切实满足学生合理需求。另外,高职院校的数学教学还有必要做好以下几点:一是遵循教育部制定的《高职高专教育高职数学课程基本教学要求》,因地制宜,突出实用性。二是必须保证一定的课时。三是对基础太差的学生,在做好课外辅导的前提下,让他们在心理上减轻对高职数学的学习压力。只有爱学,才能学得更好。
数学建模课程论文(精选14篇)篇八
将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。
数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。
数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。
3.1充分重视建模的桥梁作用。
建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的`将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。
3.2将建模的方法以及相关理论引入到数学教学中来。
我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。
3.3积极参加数学模型课等相关课程与活动。
数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。数学实验课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。
上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。
[1]余荷香,赵益民.数学建模在高职数学教学中的应用研究[j].出国与就业(就业版),20xx(10).
[2]关淮海.培养数学建模思想与方法高职高专数学教改之趋势[j].职大学报,20xx(02).
[3]李传欣.数学建模在工程类专业数学教学中的应用研究[j].中国科教创新导刊,20xx(35).
[4]李秀林.高等数学教学中渗透数学建模的探讨[j].吉林省教育学院学报(学科版),20xx(08).
[5]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教.学中的探讨[j].景德镇高专学报,20xx(04).
数学建模课程论文(精选14篇)篇九
信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。
大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。
2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。
2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。
2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。
3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。
这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。
此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。
数学建模课程论文(精选14篇)篇十
在高等教育事业改革不断深化的背景下,为了提升教育教学质量,新时期对大学数学教学提出了更高的要求。大学数学作为课堂教学的主体,教师在传授知识的同时,要注重学生学习能力和解决问题能力的培养。
数学知识来源于生活,应用于生活,如微积分作为高等数学知识中的典型代表,在各个行业中具有不可或缺的作用。为此,任课教师在大学数学教学中培养学生发现问题、分析问题和解决问题的能力十分重要,在传授知识的过程中帮助学生利用所学知识来解决实际问题。一般情况下,教师着重介绍相关数学概念和原理,推导常用公式,促使学生能够记住公式,学会公式的应用过程,逐渐掌握解题技巧。
因此,如何能够在传授知识的同时,促使学生掌握数学学习方法,将所学知识应用到实践中来解决数学问题是一个首要问题。从大量教学实践中可以了解到,在大学数学教学中渗透数学建模思想十分重要,有助于激发学生的学习兴趣,促使学生积极投入其中,切实提升学生的数学专业水平。
在大学数学教学中渗透数学建模思想,应该结合实际情况,深入挖掘数学知识。在教学中,教师应该充分发挥自身引导作用,联系学生数学知识实际学习情况,有针对性地整合数学知识,了解相关数学内容,这样不仅可以丰富教学内容,还可以为课堂教学注入新的活力,有效激发学生的学习兴趣,提升学习成效。具体表现在以下方面:
(一)闭区间连续函数的性质。
闭区间连续函数的性质内容是大学数学教学中的重要组成部分,由于知识理论性较强,知识较为抽象,学习难度较大,在讲解完相关理论知识后,可以引入椅子的稳定问题,创建数学模型,提问学生如何在不平稳的地面上平稳地放置椅子。学生可以了解到这一问题同所学知识相关联,闭区间连续函数的性质可以解决这一问题。学生整合所学知识,通过对问题的分析,可以了解到利用介值定理來解决问题。通过建立数学模型,学生更加充分地掌握了闭区间连续函数的`性质,提升了学习成效,为后续知识学习打下了坚实的基础。
(二)定积分。
定积分是高等数学教学中的重要组成部分,在解决几何问题时均有所应用,并且被广泛应用在实际生活中。如,在一道全国大学生数学建模竞赛题目中,计算煤矸石的堆积,煤矿采煤时所产生的煤矸石,为了处理煤矸石就需要征用土地来堆放煤矸石,根据上级主管部门的年产量计划和经费如何堆放煤矸石?题目中的关键点在于堆放煤矸石的征地费用和电费的计算。征地费计算难度较小,但是煤矸石堆积的电费计算难度较高,但此项内容涉及定积分中的变力做功知识点。学生掌握这些内容后就可以建立数学模型,更加高效地了解如何根据预期开采量来堆放煤矸石。通过数学模型,学生也可以了解到定积分内容同实际生活之间的联系,学习积极性就会大大提升。
(三)最值问题。
在高等数学中,最值问题占比比较大,同时在实际生活中应用较为普遍,导数知识可以解决实际生活中的最值问题,这就需要提高对导数知识实际应用的重视程度。教师在为学生讲解完导数的相关概念知识后,通过建立关于天空的采空模型,提问学生为什么雨后太阳出来了,雨滴还在空中,那么将为人们呈现出什么样的景色?学生回答彩虹。继续提问彩虹为什么有颜色,是什么决定了天空中彩虹的高度?对此,学生的兴趣较为浓厚,可以分为若干个小组进行讨论。通过分析可以得出,雨滴可以反射太阳光,形成彩虹。结合光线的反射和折射定律,借助所学的导数知识来计算得出太阳光偏转角度的最值,有效解决实际学习的问题,加深对知识的理解和记忆,提升数学知识学习成效。
(四)微分方程。
微分方程知识同实际生活之间息息相关,建立微分方程可以有效解决实际生活中的问题。这就需要学生在了解微分方程知识的基础上,进一步建立数学模型来解决问题。如,在当前社会进步和发展下,人均物质生活水平显著提升,肥胖成为危害人们身体健康的主要问题之一,受到社会各界广泛的关注和重视。通过问题精简化和假设,可以得到微分方程模型,在分析方程中饮食控制和运动锻炼两个关键要素后,有助于避免人们走入减肥误区,帮助他们树立正确的减肥理念。
(五)矩阵。
在高等数学教学中,矩阵的概念较为抽象和复杂,在讲解问题之前,应该根据知识点来创设教学情境,辅助教学活动。通过引入企业工厂生产总成本模型,充分描述工厂生产中需要的原材料和劳动力,并且详细记录管理费用。这有助于加深人们对矩阵概念的认知和理解,提升学习成效,同时帮助学生深入理解和记忆,锻炼学生的数学解题思维,加深概念理解和记忆,掌握解题技巧和方法,从而提升学生的数学建模意识。
综上所述,在大学数学教学中,可以通过数学建模思想来引导学生养成良好的自主学习能力,发挥自身的主体能动性和创新能力,提升学生解决问题的能力,将所学知识灵活运用到实际生活中,养成良好的数学素养。
数学建模课程论文(精选14篇)篇十一
走美杯”是“走进美妙的数学花园”的简称。
“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。
“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
1、活动对象。
全国各地小学三年级至初中二年级学生。
2、总成绩计算。
笔试获奖率:
一等奖5%,二等奖10%,三等奖15%。
3、笔试时间。
每年3月上、中旬。
报名截止时间:每年12月底。
走美杯比赛流程。
1、全国组委会下发通知,各地组委会开始组织工作。
2、学生到当地组委会报名,填写《报名表》。
3、各地组委会将报名学生名单全部汇总至全国组委会。
4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)。
6、全国组委会公布初赛获奖名单并颁发获奖证书。
7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。
8、各地按照组委会要求提交数学建模小论文。
9、前各地组委会上报参加全国总论坛学生名单。
10、全国总论坛和表彰活动。
数学建模课程论文(精选14篇)篇十二
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段。
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段。
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段。
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段。
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段。
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义。
(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力。
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力。
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成".现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程.
(四)加强数学建模教育有助于提高学生科技论文的撰写能力。
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的`模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作.
三、开展数学建模教育及活动的具体途径和有效方法。
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的.
(二)开展数模竞赛的专题培训指导工作。
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如20xx年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如20xx年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛。
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语。
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
数学建模课程论文(精选14篇)篇十三
第一条,论文用白色a4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。
第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。
第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。
第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。
第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含excel、spss等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。
第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。
第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。
第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。
第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。
第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为pdf或者word格式之一(建议使用pdf格式),不要压缩,文件大小不要超过20mb。
第十一条,支撑材料(不超过20mb)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的`数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用winrar软件压缩在一个文件中(后缀为rar);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。
第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。
第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。
说明:
(1)本科组参赛队从a、b题中任选一题,专科组参赛队从c、d题中任选一题。
(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。
(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。
数学建模课程论文(精选14篇)篇十四
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点。
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的.一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力。
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
1提高分析、理解、阅读能力。
2强化将文字语言叙述转译成数学符号语言的能力。
3增强选择数学模型的能力。
4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。