教学计划的实施需要教师具备良好的组织能力和教学技巧,同时也需要不断进行反思和调整。教学计划是指规划和安排教学活动的文书,有助于提高教学效果。如何编写一份科学合理的教学计划是每位教师都需要掌握的技能。以下是一些经验丰富的老师分享的教学计划,供大家参考和学习。
2023年倒数的认识教学设计与评析范文(20篇)篇一
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:倒数的意义、特点和求倒数的方法。
学习难点:1和0的倒数的求法。
学习过程:
一、创设情境,激趣导学。
1.出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1。
问:“你发现了什么?”
2.引出倒数的定义。让学生看书。
3.揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1.初步理解。
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?
2.判断,加深理解。
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)。
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)。
c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)。
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1.出示例2,找一找哪两个数互为倒数?
2.学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3.根据寻找出的结果,探究倒数的特点。
4.这两种方法,哪一种比较快?
5.设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。(2)学生汇报。
四、检测诊断,总结评价。
1.基本练习:完成教科书p28的做一做,然后集体订正。
2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。
2023年倒数的认识教学设计与评析范文(20篇)篇二
倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。
学情分析。
倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:概括倒数的意义与求法。
教学难点:理解“互为”、“倒数”的含义。
教学过程:
一、谈话引入。
师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?
生:握手。
师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。
(师生共同表演握手的动作)。
师:握手是几个人的事情呢?
生:两个人。
生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)。
二、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)。
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。
(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。
三、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)。
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?
(先把带分数化成假分数,再求它的倒数。)。
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
四、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
六、全课小结。
同学们,今天这节课你有什么收获?
板书设计。
倒数。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,就是将分子、分母交换位置。
1的倒数是1;0没有倒数。
2023年倒数的认识教学设计与评析范文(20篇)篇三
教学目标:
(1)理解倒数的意义,掌握求倒数的方法。
(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:正确理解倒数的意义及0为何没有倒数。
知识点:倒数的意义、导数的求法。
教学过程:
一、导入。
1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?
2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!
二、新授。
1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。
3、迅速地算出这两个数的乘积,比比看谁算的快!
4、讨论:通过刚才的计算你发现了什么?
5、交流讨论结果,老师板书。(乘积是1两个数)。
6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。
追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。
如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)。
(2)说说看,刚才这几组数为什么互为倒数。
7、出示例题:写出和的倒数。
8、学生讨论倒数的写法,然后再写出这两个分数的倒数(两名学生板演)。
(1)说说你是怎样想的。
(2)注意倒数的写法,部分学生会用“等号”表示。
(3)小结出求一个倒数的方法。
有没有补充?你是怎么想的?
讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。
(4)板书,生齐读。
9、口答出和6的倒数。
10、完成书上的练一练。
三、练习。
1、练习六第一题(口答并用今天所学的知识,用因为所以说几句话)。
第三题。
2、综合练习。
的倒数是()。和()互为倒数。
()的倒数是5。()和互为倒数。
1的倒数是()。()没有倒数。
3、那你能写出2、0.8的倒数吗?
学生思考,说一说,并说出自己是如何想的?
小结:求带分数的.倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。
4、练习六第4题。
先找出每组数的倒数,再看看你能发现什么?
(1)每个人在书上先写出各数的倒数;。
(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?
全班交流,看看你们能发现什么?
5、练习六第5题。
6、判断。
1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)。
2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)。
3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)。
4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)。
5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)。
四、总结。
本节课你有什么收获?
2023年倒数的认识教学设计与评析范文(20篇)篇四
教学内容:教科书第24页例1、例2及做一做。
教学目标:
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程。
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
三、运用概念,探讨方法。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
找分数的倒数;交换分子与分母的位置。
分子、分母交换位置。
例:3/55∕33∕5的倒数是5∕3。
(2)找倒数的.倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置。
例:6=1∕66的倒数是1∕6.
四、出示特例,深入理解。
看一看。例2中的那些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1=1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置。
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
五、巩固练习。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
2023年倒数的认识教学设计与评析范文(20篇)篇五
教学内容:
教科书第50页例7及相应的练习。
教学目标:。
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入。
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)。
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)。
二、教学新课。
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.
(1)问:“互为”是什么意思?(互相)。
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如乘()等于1,所以()和()互为倒数,也可以说(a)是(b)的倒数或者(b)是(a)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)。
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数。
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)。
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)。
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究。
a四人为一小组,选择一种情况研究。
b生交流汇报,师板书例子。
c引导概括求倒数的方法。
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)。
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)。
4、归纳如何求一个数的倒数。
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)。
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
2023年倒数的认识教学设计与评析范文(20篇)篇六
学习目标:
一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
三、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)。
就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:。
发现1:带分数的倒数都(小于)本身;。
发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结。
今天学习了什么?我们一起回顾总结出来好吗?
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
将本文的word文档下载到电脑,方便收藏和打印。
2023年倒数的认识教学设计与评析范文(20篇)篇七
教材p28页中的例1、“做一做”及练习六中的部分练习题。
【教学目标】。
1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
【教学重点】。
理解倒数的意义,学会求倒数的方法。
【教学难点】。
小数与整数求倒数的方法以及0、1的倒数。
【教学方法】。
创设情境、启发诱导、合作交流、自学与讲授相结合等。
【教具准备】。
课件。
【教学过程】。
一、激趣引入。
二、新知探究。
(一)探究讨论,理解倒数的意义。
1、课件出示算式。
先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12。
小组汇报交流。
2、出示倒数的意义:乘积是1的两个数互为倒数。
3、你是怎样理解“互为倒数”的呢?能举例吗?
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
2、互为倒数的两个数有什么特点?
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
4、辨析:下面的说法对吗?为什么?
a:2/3是倒数。
b:得数为1的两个数互为倒数。()。
c、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()。
d、0的倒数还是0。()。
(三)运用概念。
1、讨论求一个分数的倒数的方法。
出示例1:写出其中3/5和7/2两个分数的倒数。
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。
2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)。
3、1的倒数是几?0的倒数是几?
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:1的倒数是1,0没有倒数。
4、小结。
求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。
三、巩固练习。
1、写出下面各数的倒数。
4/1116/97/84/1535。
2、判断。
(1)真分数的倒数都是假分数。()。
(2)假分数的倒数都小于1。()。
(3)0的倒数是0,1的倒数是1。()。
四、课堂小结。
今天我们学习了有关倒数的哪些新知识?
2023年倒数的认识教学设计与评析范文(20篇)篇八
教学目标:
1.能清楚地知道倒数的概念,能求一个数的倒数。
2.培养学生动手动脑能力,以及判断、推理能力。
3.培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。
教学重点:能求一个数的倒数。
教学难点:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。
教学准备:多媒体课件。
教学过程:
一、用汉字作比喻引入。
1.师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2.提一个开放性的问题:看到这个课题,你们想到了什么?
二、新知探索:
1.研究倒数的意义。
乘积等于1的两个数叫做互为倒数。
倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2.学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。
(b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。
(c.以“带分数”为例;带分数的倒数是真分数。)。
(d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。
(e.以“整数”为例;整数相当于分母是1的假分数)。
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3.讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。
4.总结方法:
(除了0以外)你认为怎样可以很快求出一个数的倒数?
三、反馈巩固:
多媒体出示:
1.写出下面各数的倒数:
2.判断:
(1)互为倒数的两个数的乘积一定等于1。
(2)2和它的倒数的和是?()。
(3)假分数的倒数是真分数。()。
(4)小数的倒数大于1。()。
(5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()。
(6)a的倒数是?()。
(让学生用手势判断,进行辨析,训练说理能力。)。
3.游戏:找朋友。
一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。
四、全课总结,自我评价。
提问:通过这节课,你学到哪些知识?
2023年倒数的认识教学设计与评析范文(20篇)篇九
乘积是1的两个数互为倒数1的倒数是1.0没有倒数。
0.1的倒数105的倒数是51又1/8的倒数是8/9。
(0.1=1/10)(5=5/1)(1又1/8=9/8)。
求小数的倒数的方法:求带分数的倒数的方法:带分数分数假分数倒数。倒数。
2023年倒数的认识教学设计与评析范文(20篇)篇十
教学目标:
1.知道倒数的意义。
2.经历倒数的意义这一概念的形成过程。
3.会求一个数的倒数。
4.培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。
教学重点:
知道倒数的意义,会求一个数的倒数。
教学难点:
1和0倒数的问题。
教学关键:
掌握倒数的意义。
教学过程。
一、谈话导入。
师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?
生:想。
生:分数乘法。
师:我们来算一算怎么样?(出示口算卡算一算。)。
生:好。
师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!
二、揭示倒数的意义。
1、出示例1:先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12。
师:上面这几道算式你能很快地算出结果吗?
生:能。(指名上去写结果)。
师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。
(交流完后请个别学生说一说)。
生:乘积都是1。(师板书:乘积是1)。
师:还有别的发现吗?(相乘的两个数有什么特征?)。
生:相乘的两个数的分子、分母正好颠倒了位置。
师:你们能写出这样的两个数吗?
生:(齐)能。
2、让学生自由写后再归纳倒数的意义。
师:你们写的算式乘积都是多少?
生:乘积都是1。
师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)。
(让生齐读课题和倒数的意义)。
3、理解“互为倒数”的含义。
师:“乘积是1的两个数互为倒数.”你有不理解的地方吗?
生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)。
师:好像以前也学过有这样关系的两个数,还记得吗?
生:记得,是因数和倍数。
三、探索求倒数的方法。
1、出示例2:下面哪两个数互为倒数?
3/567/25/31/612/70。
让学生说,师板书:3/5――→5/3。
6――→1/6。
师:你是怎样找一个数的倒数的?
生:把分子、分母交换位置。(师板书在箭头上面)。
师:那6的倒数怎么找?
生:把6看作6/1,然后再交换分子、分母的位置。
2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。
生:1和0有倒数吗?那它们的倒数是什么呢?为什么?
同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)。
3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。
4、引导学生打开课本学习。
四、巩固练习。
1、课本24页做一做。
2、互说倒数。(25页练习六第2题,同桌合作,师生合作)。
3、25页第3题:下面的说法对不对?为什么?
(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。()。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()。
(3)0的倒数还是0。()。
(4)一个数的倒数一定比这个数小。()。
4、第4题。
五、课堂小结。
这节课我们学习了什么?你学到了什么知识?能说一说吗?
板书设计:
(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。
乘积是1的两个数互为倒数。
(2)3/567/25/31/612/70。
分子、分母交换位置。
3/5――――――――――――→5/33/5的倒数是5/3。
分子、分母交换位置。
6=6/1―――――――――――→1/66的倒数是1/6。
1的倒数是1,0没有倒数。
2023年倒数的认识教学设计与评析范文(20篇)篇十一
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
知道倒数的意义和会求一个数的倒数。
教学难点:
1、0的倒数的求法。
教具准备:
课件。
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义。
师:前面我们学习了分数乘法,请同学们计算几道题。
师:观察它们有什么共同的特点?生:乘积都是1!
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始?
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。)。
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。出示例7。
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)。
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数。)。
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:2/5和5/2的积是1,我们就说?(生齐说)。
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。
探索求一个倒数的方法。
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能。
师:试一试!
师在黑板上出示3/57/2,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数求带分数的倒数的方法:带分数。
三、分数倒数。倒数。假分数。
师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)。
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3?把这此分数的分子分母调换位置后……(生齐:分母就为0了,而分母不可以为0.)师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。)。
四、巩固练习。
1、打开书,阅读课本p34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)。
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是(2)9/7的倒数是()。
2/5的倒数是()10/3的倒数是()。
4/7的倒数是()6/5的倒数是()。
(3)1/3的倒数是()(4)3的倒数是()。
1/10的倒数是()9的倒数是()。
1/13的倒数是()14的倒数是()。
由学生说出各数的倒数。然后。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。
生4:我发现分子是1的分数。
4、填空:
7×()=15/2×()=()×3又2/3=0.17×()=1。
五、课堂小结。
1、小结:今天我们学习了什么?
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计。
2023年倒数的认识教学设计与评析范文(20篇)篇十二
学情分析:
本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。
教学目标:
1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。
2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。
3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。
教学重难点:
重点:倒数的意义与求法。
难点:1、0的倒数,整数、小数、带分数的倒数的求法。
教具准备:课件(或练习张贴纸)。
教学过程:
一、揭示倒数的意义。
同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):
(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?
吴——吞杏——呆干——士。
(二)仔细观察下列各组算式,再进行计算。
(三)计算过后,你们发现了什么?
(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)。
(五)学生汇报,教师有选择地进行板书。
对学生的学习成果加以肯定表扬。进而追问:
1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)。
2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)。
(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。
板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)。
(七)举例说明倒数的意义。
1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。
板出:和互为倒数的倒数是是的倒数。
2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)。
3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)。
4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)。
5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。
(八)课件出示测试题。
1、判断。
1.得数是1的两个数叫做互为倒数。()。
2.因为10×=1,所以10是倒数,是倒数。()。
3.因为+=1,所以是的倒数。()。
2、口答练习。
1×=1×()=1×()=1×()=1。
下面哪两个数互为倒数。(连线)注:以下为例7学习内容。
二、探索求一个数的倒数的方法。
(一)引导观察,发现特征:
1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)。
2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。
3、根据这一特点你能写出一个数的倒数吗?
4、试一试:写出、的倒数。(完后指名板演,集体交流订正)。
5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。
(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?
2,课件出示讨论题:
(1)18的倒数是什么?1的倒数是什么?0的倒数呢?
(2)的倒数是什么?
(3)0.2的倒数是什么?
3,练习:写出下列各数的倒数:
8370.31.2。
4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。
5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)。
三、练习巩固,加深认识。
1、请打开课本p50阅看,把你认为重要的划起来读一读。
2、完成“练一练”。
写出下面各数的倒数。
8
(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)。
(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。
3、先说说下面每组数的倒数,再看看你能发现什么?
(1)的倒数是();的倒数是();的倒数是();
(2)的倒数是();的倒数是();的倒数是();
(3)的倒数是();的倒数是();的倒数是();
(4)3的倒数是();9的倒数是();14的倒数是();
4、填空。
7×()=×()=()×=0.17×()=1。
5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。
四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?
五、布置作业:练习十第2、3题。
2023年倒数的认识教学设计与评析范文(20篇)篇十三
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
教学光盘。
自学课本p50:
(1)什么是倒数?倒数的'概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
1、出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×()=1,再得出结果。
2023年倒数的认识教学设计与评析范文(20篇)篇十四
教学内容:教科书第24页例1、例2及做一做。
教学目标:
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1、通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的`句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
找分数的倒数;交换分子与分母的位置。
分子、分母交换位置。
例:3/55∕33∕5的倒数是5∕3。
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置。
例:6=1∕66的倒数是1∕6、
看一看。例2中的那些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1=1∕1=1,1的倒数是1、
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置。
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
2023年倒数的认识教学设计与评析范文(20篇)篇十五
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置。
例:3/55∕33∕5的倒数是5∕3。
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置。
例:6=1∕66的倒数是1∕6.
看一看。例2中的那些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1=1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置。
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
2023年倒数的认识教学设计与评析范文(20篇)篇十六
1、能清楚地知道倒数的概念,能求一个数的倒数。
2、培养学生动手动脑能力,以及判断、推理能力。
3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。
:能求一个数的倒数。
:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。
:多媒体课件
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
二、新知探索:
1.研究倒数的意义
。乘积等于1的'两个数叫做互为倒数。
。倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2.学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c.以“带分数”为例;带分数的倒数是真分数。)
(d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e.以“整数”为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3.讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4.总结方法:
(除了0以外)你认为怎样可以很快求出一个数的倒数?
三、反馈巩固:
多媒体出示:
1.写出下面各数的倒数:
2.判断:
(1)互为倒数的两个数的乘积一定等于1。()
(2)2和它的倒数的和是?()
(3)假分数的倒数是真分数。()
(4)小数的倒数大于1。()
(5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()
(6)a的倒数是?()
(让学生用手势判断,进行辨析,训练说理能力。)
3.游戏:找朋友
一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。
四、全课总结,自我评价。
提问:通过这节课,你学到哪些知识?
2023年倒数的认识教学设计与评析范文(20篇)篇十七
教学内容:
新人教版六年级数学上册第28页的例1。
教学目标:
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:
理解倒数的意义,学会求倒数的方法。
教学难点:
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学准备:
多媒体课件。
教学过程:
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。
师:谁还能说出这样的数?(课件出示)。
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)。
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知。
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)。
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)。
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)。
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
(三)运用概念。
1、讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)。
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
四、堂堂清作业。
(一)填一填。(出示课件)。
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)。
1、5/3是倒数。()。
2、因为3/4×4/3=,所以4/3是倒数。()。
3、真分数的倒数大于1,假分数的倒数小于1。()。
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()。
(三)说一说。(课本第29页的第3题)。
五、课堂小结:
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。
2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
2023年倒数的认识教学设计与评析范文(20篇)篇十八
“倒数的认识”是人教版九年义务教育六年制小学数学第十一册第三单元第一课的内容。本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法计算的后继内容,同时又是学习分数除法的先备条件,是属于承上启下的知识类型,主要包含两部分的知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:
教学目标。
根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:
(1)让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
(2)让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
(3)通过自主探索、合作交流,培养学生爱学数学、乐学数学的情感。
教学重点和难点。
倒数的引入是为分数除法作准备的,所以本课的教学重点是让学生熟练掌握求一个数(包括分数、小数、自然数等)的倒数的法,教学的难点是帮助学生理解倒数的意义,尤其是互为倒数的`两个数间相互依存的关系。
本课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设“找朋友”、“我来当名医”、“火眼金睛”等情境,以平等宽容的态度激起学生的探究热情。
1、观察、比较的方法。
倒数的意义是从几组乘积是1的算式引入的,因此,指导学生进行有效的观察比较这几组算式的共同点和不同点可以进一步培养学生的观察、分析能力,加深对倒数的意义的理解和识记。
2、合作交流的学习方法。
本课的部分教学环节的实施采用放手让学生自由讨论、相互交流的方式,这样就提高了学生学习的主动性和积极性,发挥了学生间的互补作用,增强合作意识,培养团结协作精神。
3、自学尝试的方法。
在倒数的意义和求一个数倒数的方法的学习中,指导学生自学和尝试性的解答,最后再引导学生对照课本,进行比较,促使学生仔细认真阅读课本,养成良好的学习习惯,培养学生的创新精神和创造能力。
(一)激情导入。
1、小故事。
从前,大清皇帝乾隆喜欢旅游,有一次,他来到一家天然居大酒楼吃饭,乾隆看到这里环境非常好,像是来到了天上仙境一般,于是写了一副非常有趣的对联“客上天然居,居然天上客。”
这副对联有趣在哪里呢?(可以倒着说)。
后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。成为了千古佳联。
在我们平常的语文学习中也有这种类似的现象。
2、“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?还有这样的词语,现实,牛奶、字的顺序颠倒了,词语的意思也变了。
真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里两个数之间也有这种有趣的关系。
(二)新授。
我们今天就来学习这样关系的两个数。板书:倒数、这个字会读吗?齐读课题。
1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、迅速地算出这两个数的乘积,比比看谁算的快!
3、讨论:通过刚才的计算你发现了什么?
4、观察一下,这三组分数有什么特点?(他们的乘积都是1)。
像这样,乘积是1的两个数我们就说其中一个是另一个数的倒数,比如:x是x的倒数,也可以说这2个数互为倒数。
那你能说说怎样的两个数互为倒数呢?
5、交流讨论结果,老师板书。(乘积是1的两个数)。
6、师由此引出倒数的意义,课件出示:生齐读倒数的意义。
你觉得这句话中哪些字非常关键呢?
追问:你是怎么理解“互为”的意思?
是倒数这样说对吗?
也就是这2个数是相互依存的关系、在哪里我们还学习过相互依存的数学概念?
谁能像老师一样,说说哪两个数互为倒数。
7、问:老师随意写出2个数,你能判断这2个数是不是互为倒数吗?说明理由。
板书xx——。
8、判断一个数的倒数,大家会了,那现在就挑选一个你喜欢的数来求它的倒数,
你最喜欢求哪个数的倒数,为什么?
119030。
9、通过练习,请思考一下怎么求一个数的倒数呢?
10、统一求倒数的方法:求一个数(0除外)的倒数,可以把这个数的分子分母调换位置。
11、讨论:所有数都能求它的倒数吗?
(三)巩固练习。
1、找朋友。
2、火眼金睛。
3、我来当名医。
(四)课堂小结。
不仅文学中有“倒”的现象,数学中有倒数,而且自然界中也有这么美丽的景观。(课件欣赏美丽的自然风景。)在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们一定能从中体会到无穷的乐趣。
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数只要把这个数的分子分母调换位置。
×=1×=1×=1。
2023年倒数的认识教学设计与评析范文(20篇)篇十九
1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。
2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。
理解倒数的意义,掌握求倒数的方法。
熟练写出一个数的倒数。
多媒体课件。
一、情境导入。
1、口算。
5/12×2/5=15/7×7/5=11/8×8/13=。
5/21×1/5=3/16×7/3=8/21×7/8=。
先独立考虑,再指名口算订正。
2、比一比,看谁算得又对又快:
2/3×3/2=2×1/2=11/8×8/11=。
1/10×10=7/9×9/7=1/7×7=。
6/5×5/6=1/5×5=22/35×35/22=。
同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。
二、合作探索。
1、小组合作交流:
(1)和同桌说一说你的发现。
(2)请你自身举出3个像上面这样的乘法式子。
小组代表说说有什么发现。指名说说自身举出的例子。
教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。
教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)。
教师:书上又是怎样讲解倒数的呢?我们一起来读一读。
阅读教材,进一步理解。
教师:现在谁来说一说自身是怎样理解倒数的?
同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。
出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。
2、强化概念理解。
你认为下面这两种说法是否正确?
(1)2/3是倒数。
(2)得数是1的两个数互为倒数。
同学先独立考虑,再口答,说明理由。
2023年倒数的认识教学设计与评析范文(20篇)篇二十
本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。
1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。
2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。
3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。
重点:倒数的意义与求法。
难点:1、0的倒数,整数、小数、带分数的倒数的求法。
课件(或练习张贴纸)。
一、揭示倒数的意义。
同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):
(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?
吴——吞杏——呆干——士。
(二)仔细观察下列各组算式,再进行计算。
(三)计算过后,你们发现了什么?
(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)。
(五)学生汇报,教师有选择地进行板书。
对学生的学习成果加以肯定表扬。进而追问:
1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)。
2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)。
(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。
板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)。
(七)举例说明倒数的意义。
1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。
板出:和互为倒数的倒数是是的倒数。
2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)。
3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)。
4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)。
5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。
(八)课件出示测试题。
1、判断。
1.得数是1的两个数叫做互为倒数。()。
2.因为10×=1,所以10是倒数,是倒数。()。
3.因为+=1,所以是的倒数。()。
2、口答练习。
1×()=1×()=1×()=1×()=1。
下面哪两个数互为倒数。(连线)注:以下为例7学习内容。
二、探索求一个数的倒数的方法。
(一)引导观察,发现特征:
1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)。
2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。
3、根据这一特点你能写出一个数的倒数吗?
4、试一试:写出、的倒数。(完后指名板演,集体交流订正)。
5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。
(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?
2,课件出示讨论题:
(1)18的倒数是什么?1的倒数是什么?0的倒数呢?
(2)的倒数是什么?
(3)0.2的倒数是什么?
3,练习:写出下列各数的倒数:
8370.31.2。
4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。
5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)。
三、练习巩固,加深认识。
1、请打开课本p50阅看,把你认为重要的划起来读一读。
2、完成“练一练”。
写出下面各数的倒数。
8
(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)。
(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。
3、先说说下面每组数的倒数,再看看你能发现什么?
(1)的倒数是();的倒数是();的倒数是();
(2)的倒数是();的倒数是();的倒数是();
(3)的倒数是();的倒数是();的倒数是();
(4)3的倒数是();9的倒数是();14的倒数是();
4、填空。
7×()=×()=()×=0.17×()=1。
5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。
四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?
五、布置作业:练习十第2、3题。