五年级教案包含了详细的教学内容和教学方法,有利于学生的学习。下面是一些经过教学实践证明有效的五年级教案,希望对广大教师有所启发。
真分数和假分数人教版五年级教案设计(通用21篇)篇一
1.小数化分数。
板书例1把0.9,0.03,1.21,0.425化成分数。
教师:想一想每个小数的意义,能把它们写成分数吗?
学生按每个数的意义直接写成分数(口述)教师板书:
教师:请观察化简前的分数,分母与小数有什么关系:有没有规律?
学生分小组讨论、汇报。
学生讨论、口答后,教师板书:原来的小数去掉小数点作分子,
教师:请按照找出来的规律,(指板书)把下面的小数化成分数。(学生口答教师板书。)。
教师:谁再说一说如何把小数化成分数。学生口答后教师板书补出:“化成分数后,能约分的.要约分”。笔算练习:(请几位同学用投影片写,集体订正。)。
0.76.130.080.5。
0.661.750.1250.02。
能不能直接把它们写成小数?
学生口答教师板书:
教师:说一说你是根据什么把这些分数改写成小数的?(小数的意义。)。
学生讨论、口答后教师归纳并板书:
去掉分母,看分母中1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。
练习:(请一位同学板书,其余的写本上。)。
把下面的分数化成小数:
教师:请对比这一组分数与例2中的分数有什么不同?(分母不是10,100,1000,…。)。
教师:请想一想,用什么方法可以把它们化成小数?并请算出来。
同学分小组讨论、汇报时教师板书:(教师有意做如下排列)。
教师:请再说说用的什么方法?口答后在左右两列式下板书出:
分子除以分母化成分母是10,100,…的分数。
的方法来做?
学生讨论后教师说明:
因为10,100,1000等各数都只含有2和5两个质因数。9和14都含有2和5之外的质因数,即是找不到一个自然数与9,14相乘能得到10,100,1000等。
教师:能说一说分母不是10,100,1000等的分数化小数的方法吗?
学生口答后教师板书:
用分子除以分母,除不尽时,可以根据需要按四舍五入法保留几位小位。能化成有限小数的分数,还可以先转化为分母是10,100,1000等的分数,再写成小数。
生笔算,请4位同学写在投影板上订正,第5题板书介绍写法。)。
(三)巩固反馈。
1.(口答)把下面各小数化成分数。
0.01,0.4,0.8,1.05,2.73。
2.把下面分数化小数。(口答)。
3.把下面分数化小数。
(四)课堂总结与课后作业。
1.小数化分数的方法。
2.作业:课本147页练习三十三,3,4,5,6。
课堂教学设计说明。
分数与小数的互化,运用的小数的意义,分数与除法的关系,分数基本性质等,都是学过的旧知识。所以小数化分数和十进分数化小数都采用引导学生自学的方式进行。分母是非10,100,1000等的分数化小数。给学生充分的时间讨论,让学生自己去发现利用分数与除法的关系,用分子除以分母,或利用分数基本性质,把分数化成十进分数再化成小数这样两种方法。学生在试算中,已经遇到了除不尽的情况,而恰是这种分数不能化为十进分数,抓住这个学生已经感知的问题,提出讨论,引导学生分析分母的质因数情况,认识到有限小数分母的特点。这样不仅使学生掌握了针对具体分数的情况去用合适的方法转化,也为下节课的学习作好了准备。本节教学中,分数与小数的相互转化,沟通了分数与小数的联系,既使学生对已学的旧知识加深了理解,也让学生认识到事物是相互联系,相互转化的。
本节新课教学分两部分。
第一部分引导学生利用小数意义自学小数化分数的方法。
第二部分学习分数化小数的方法。分两层,学习分母是10,100,1000等的分数化小数;学习利用分数与除法关系,或分数基本性质把分数化小数。
板书设计。
真分数和假分数人教版五年级教案设计(通用21篇)篇二
教学目标:
1、正确、流利、有感情地朗读课文。
2、在朗读中感受洪水的危急、肆虐。在品读课文中感受老汉的“如山”形象。
教学重点:在品读课文中感受老汉的如山形象。
教学难点:理解“桥”的象征意义。
教学时间:两课时。
教学设计:
一、引入:孩子们,请静下心来,静静地看老师写,板书《桥》。读读课题。
师:有一个小村庄,曾有过一座窄窄的木桥,它陪着人们日出而作,日落而息,就这样平静地过了许多年。可是有一天黎明,一场突如其来的灾难,让这一切都改变了。这究竟是一场什么灾难呢?孩子们,你们都预习了课文,能告诉我吗?(山洪暴发了。)。
二、教学新课:
(一)、朗读课文,感受洪水的危急。
生读课文后汇报。
课件出示句子1:山洪咆哮着,像一群受惊的野马,从山谷里狂奔而来,势不可当。
(2)、男生读读这个句子,想想:山洪像什么?山洪像怎样的野马?山洪像一匹受惊的野马吗?(三个问题层层递进,让学生能真实地感受到山洪的可怕)。
师:这样一群受惊的野马,它们桀骜不驯,力大无穷。读读这句话,想想,你仿佛看到了怎样的场面?(让学生想象,感受万马奔腾、浩荡而来的场面,从而感受洪水的可怕。)。
(3)、齐读这个句子,理解“势不可当”的意思。
师:这句话让我们感受到了山洪的可怕,还有哪些句子也写出了山洪的可怕?
生汇报。
课件出示句子2:近一米高的洪水已经在路面上跳舞了。
(1)、师:一米高有多高?大家比一比,估计在你身体的哪个部位?(生纷纷用手在自已的身上比划后得出结论。)。
(2)、师:“跳舞”这个词多美!但在这里,我们的感受是怎样的呢?(可怕,恐怖),因为洪水跳得是“死亡之舞”啊!
(3)、指名读这个句子,相机指导朗读。将“一米高”和“跳舞”这两个词略重读。
师:课文中还有哪些句子也能让我们感受到洪水的可怕?
生汇报。
课件出示句子3:死亡在洪水的狞笑声中逼近。
生齐读这个句子,师:读着这个句子,你仿佛听到了什么?谁在笑?在怎样的笑?(得意、猖狂、)。
课件出示这三个句子,自由读读这三个句子,想想它们之间有什么联系?应该怎样读?可以讨论。(洪水越来越近,情况越来越危急。在朗读时语气要由轻到重,语速要由慢到快。)学生汇报后,指导朗读。
(二)、品读课文,感受老汉的“如山”形象。
师:在这千钧一发的时刻,谁出现了?(老汉)。
师:这是一位怎样的老汉?孩子们,快速默读课文,勾画出文中描写老汉的句子,把你的感受批在旁边。可以写一个词语,也可以是一个短句。
生汇报。
课件出示句子a:老汉清瘦的脸上淌着雨水。他不说话,盯着乱哄哄的人群,他像一座山。
(1)、咱们一起来读读这个句子,你读出了什么?(镇静、从容)。
(2)、从哪些词语中可以感受到老汉的从容、镇静?(不说话、盯着)。
(3)、创设情境朗读:
a:师:倾盆大雨中,面对你拥我挤的人群,生接读:老汉不说话,盯着乱哄哄的人群,他像一座山。
b:师:山洪咆哮,死神一步步逼近,面对疯了似的人群,生接读:老汉不说话,盯着乱哄哄的人群,他像一座山。
c:师:窄窄的木桥,跌跌撞撞蜂拥而来的人群,面对随时可能发生的危险,生接读:老汉不说话,盯着乱哄哄的人群,他像一座山。
师:此时此刻,我想你们一定明白了这样一位清瘦的老汉为什么像一座山,他是一座什么山?(人们的靠山)。
生汇报。
课件出示句子b:老汉沙哑地喊话:“桥窄!排成一队,不要挤!党员排在后边!”
(1)、咱们一起读读这句话,然后我请你们来说说你读出了什么?生汇报。
(2)、孩子们,看看这句话,短短十几个字用了三个感叹号!老汉的声音虽然是沙哑的,但却是铿锵有力的!想想,我们在读这句话时应该怎样读?(指导学生读时语速可稍慢一点,语气要有力!)。
生汇报。
课件出示句子c:老汉突然冲上前,从队伍里揪出一个小伙子,吼道:“你还算是个党员吗?排到后面去!”老汉凶得像只豹子。
(1)、孩子们,咱们来猜一猜,老汉为什么要单单把小伙子揪出来呢?
生汇报:a:因为他是老汉的儿子。师:你从哪儿知道的?孩子,你可真会读书,你真正读懂了这篇课文。
b:小伙子是个共产党员。师:对,小伙子是个共产党员,他可能排在了什么地方?
(2)、师:小伙子不光是老汉的儿子,他更是一位共产党员。所以老汉把他揪了出来,让他排到了后面!就这样,村子里的其它人都安全地撤离了,只剩下了老汉和小伙子。此时此刻,你认为这是一位怎样的老汉?(大公无私、顾全大局、不徇私情……)。
生汇报:狠心的父亲。
生汇报:不称职的父亲。
……。
生汇报,师相机指导。
师:是啊,当村子里的其他人都安全了,只有老汉和儿子时,他就是一位普通的、平凡的父亲。他和我们每个人的父亲都一样,深深地爱着自己的儿子。他比谁都希望自己的儿子能活下来。这就是“父爱如山”。
过渡:村民安全地撤离了,小伙子被洪水吞没了,老汉也在洪水中消失了,只剩下一片白茫茫的世界。
(三)、感受“桥”的深刻含义。
(1)、音乐响起,孩子配乐读最后几段。
生讨论后汇报。
(2)、这篇课文以《桥》为题,你认为“桥”仅仅是指那座窄窄的小木桥吗?
小结:是啊,桥不仅仅是那座小木桥,它更是老汉用自己的生命为村民搭建的生命桥、希望桥。
三、板书设计:
老汉。
村民桥小伙子。
真分数和假分数人教版五年级教案设计(通用21篇)篇三
本课是在学生知道怎样把分母是整十、整百、整千的分数转化为小数,理解了分数和除法的关系的基础上进行教学的。应该说学生有这些知识的铺垫,对本课内容的理解和掌握还是比较容易的。
在教学中我结合两个例题的教学,引导学生自主探索分数与小数的互化方法,学生说的都不错,通过观察例10的三个分数,学生基本上都能得出一位小数的分母是10、两位小数的分母是100、三位小数的分母是1000,分子就看小数的小数部分是多少的结论。因为学生说的都很好,所以我进行了适当的拓展,让学生试着尝试把带分数转化为小数。学生完成的也不错,大部分的学生都是先把带分数化成假分数后,再用分子除以分母。我在这里采用的方法是引导学生观察化后的小数与带分数进行比较,结果很多学生发现它们的.整数部分是相同的,然后我在启发他们思考:带分数化成小数还可以怎么化?学生很自然得出整数部分不变的结论。
通过本课的教学我也感觉到,教师要善于引导学生沟通新旧知识的联系,让学生学会利用旧知自主学习新知识,充分发挥知识的正迁移作用,提高学生学习数学的能力。主要体现了两个方面,一是联系分数的意义来比较,二是把分数化成小数再比大小。从学生的反馈情况看说明学生对分数的意义理解的还是比较到位的,有了之前分数同除法的关系这一知识点,把分数化成小数,学生也已理解并掌握。对照比较,不难发现,把分数化成小数后再比较两个小数的大小,比较方便,而且简单,易被学生接受。
这一点可以从之后的试一试中也能体现,只是除不尽的要用四舍五入法求近似值,注意约等号的使用。因为除不尽的往往都是循环小数,也有学生说保留三位小数,不一定要除到第四位。我很欣赏学生们有这样的想法,不拘一格,不局限于书本,不盲目地服从,多给他们一点时间和空间,有时也会有意想不到的喜悦。
将本文的word文档下载到电脑,方便收藏和打印。
真分数和假分数人教版五年级教案设计(通用21篇)篇四
教学目标:使学生理解整数减带分数和被减数的分数部分小于减数年的分数的带分数减法的算理,掌握计算方法并能正确地进行计算。
教材分析:教材通过例3、例4介绍带分数减法中被减数是整数和被减数的分数部分小于减数的分数部分的计算方法。在其前安排了准备题,是为这两个例分散难点,作好必要的准备。
教学过程:
一、创设情境营造氛围。
把整数或带分数化成假分数,说一说像怎么想的?p132准备题。
二、尝试探索建立模型。
1.教学例3。
a、出示例3,看一看分数部分够不够减?怎么办?
b、分组讨论。
c、反馈讲评。
d、看书p132。
2.试一试:先看一看分数部分够不够减,不够减怎么办?
3.教学例4。
a、出示例4。
b、看一看分母相同吗?怎么办?
c、再看一看分数部分够减了吗?不够减又怎么办呢?
4.试一试。
5.小结带分数减法的计算方法。
三、巩固深化拓展延伸。
1.基本练习p133、1--4。
2.说一说带分数减法有几种类型?要注意什么?
3.小结:这节课我们学习了什么?你觉得和前面的内容比较又有什么不同?
真分数和假分数人教版五年级教案设计(通用21篇)篇五
教学目标:使学生学会把整数或带分数化成假分数的方法,并能正确地把整数或带分数化成假分数。
教学重点:熟练地进行整数或带分数化成假分数。
教学难点:能进行知识运用,培养实践能力。
教学课型:新授课。
教具准备:课件。
教学过程:
一,复习铺垫,准备迁移。
1,用分数的意义说明下列分数,以及每个分数的分母,分子和分数单位。[课件1]。
3/42/21/65/57/78/23。
2,在括号里填上适当的数。[课件2]。
2个1/3是()/()6个1/6是()/()。
8个1/8是()/()l4个1/2是()/()。
18个1/5是()分之()17个1/4是()/()。
二,探究新知,激发思维。
1,教学p103。例5:把1化成分母分别是2,3,4,5,…的分数。
提问:a,说说图意是什么你有没有反对的意见。
板书:1=2/2=3/3=4/4=5/5=……。
b,其它整数能不能化成分母是任意非0自然数的假分数呢。
2,教学p103。例6:把2和5分别化成分母是3的假分数。
(1)同桌相互说说怎样把2和5化成分母是4的分数。
(2)集体说说怎样把一个整数化成指定分母的.分数。
(3)小结:把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子。
※把1,2,5化成分母是1的假分数。
3,教学p104。例7:把2化成分母是5的假分数。
(1)提问:a,谁能说说假分数是怎样化成带分数的。
b,那么,由此及彼,怎样把带分数化成假分数呢。
(2)板书:2=5×2+4/5=14/5。
(3)小结:把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子。
※p104。做一做1,2。
三,总结反馈,巩固提高。
1,总结:今天我们学习的内容是什么。
2,p105。1,3。
四,家作。
p105。2。
真分数和假分数人教版五年级教案设计(通用21篇)篇六
学习目标:
1.通过本课学习,使学生懂得“坐井观天”这个成语的意思。
2.掌握本课的生字、词。
3.有感情地朗读课文。
学习重点、难点:
1.学习重点:青蛙和小鸟的对话。让学生理解青蛙和小鸟对天有多大这个问题为什么会有不同的看法。
2.学习难点:理解“坐井观天”的意思。
学习过程:
一、导学。
1.板书课题:坐井观天。
2.张挂学习挂图。板书:观。讲解字形、字义。
3.解释课题:坐井观天,就是坐在井里看天。
4.提出问题:谁坐在井里看天呢?在井里看到的天是什么样子呢?请大家听我读课文。
二、范读课文或放录音。
1.要求学生一边听,一边想上面的两个问题。
2.要求学生听准生字的读音。
三、指导学生初读课文。
1.学生自读课文:现在,请同学们自己读一遍课文。读的时候,要注意读准生字的字音,用序号把这一课的几个自然段标出来。
2.指名让学生分段朗读课文。
四、展交生字、词。
1.出示注音卡片:观沿答百别弄际抬信。
2.要求读准字音,认清字形。
3.用生字练习组词。
五、课堂练习。
1).指导书写生字。
2).比一比,再组成词语:
井()观()沿()百()。
开()现()没()白()。
3).齐读课文。要求读准字音,读得流利。
我会填。
坐()观()()熟蒂()()有()短。
徒()无()()苗()长()长()短。
想一想组一组。
卜:补补丁()()。
力:()()()()。
又:()()()()。
羊:()()()()。
第二课时。
学习目标:
1.通过本课学习,使学生懂得“坐井观天”这个成语的意思。
2.掌握本课的生字、词。
3.有感情地朗读课文。
学习重点、难点:
1.学习重点:青蛙和小鸟的对话。让学生理解青蛙和小鸟对天有多大这个问题为什么会有不同的看法。
2.学习难点:理解“坐井观天”的意思。
学习过程:
一、导学。
1.张挂学习挂图,读题。
2.上一课,我们初步读了《坐井观天》这篇课文。今天,我们来细读、理解。
二、讲读课文。
1.学习第一自然段。对照挂图,让学生说明青蛙和小鸟各自所处的位置。板书:井沿。讲解生字。井沿:井沿,就是井口的边沿。沿,读第二声,不要读成第四声。
2.讲读第二、三自然段。
(1)青蛙向小鸟提出了什么问题?(你从哪儿来呀?)。
(2)小鸟是怎么回答青蛙的?(我从天上来,飞了一百多里)。
(3)“一百多里”在这里说明了什么?(一百多里是一段很长的路程,在这里说明小鸟飞了很远,天很大)。
(4)指导学生分角色朗读第二、三自然段。
3.讲读第四、五自然段。
(1)朗读第四、五自然段。
(2)“说大话”是什么意思?(大话是指夸张的话)。
(4)小鸟是怎么回答青蛙的?(你弄错了。天无边无际,大得很哪!)。
板书:无边无际。
(5)无边无际是什么意思?用来形容什么?(无边无际没有边际的意思。在这里用来形容天非常大)。
(6)指导学生分角色朗读第四、五自然段,注意“哪”的读音和语气(“哪”作语气词,读轻声,不读第三声)。
(7)青蛙和小鸟为了一件什么事争论起来了?(为了天有多大的问题争论起来)。
4.讲读第六、七自然段。
(1)青蛙为什么认为天不过井口那么大?(因为青蛙天天坐在井里,抬头看见的天只有井口那么大)。
(2)指导朗读“我不会弄错的。”(自信、肯定、自以为是的语气)。
(3)小鸟为什么笑了?(小鸟笑青蛙眼光太狭窄,只能看到井口那么大的一小片天,还自以为是,不承认自己的看法有错误)。
(4)小鸟为什么叫青蛙跳出井口来看一看呢?(因为青蛙跳出井口以后,眼界就会变得开阔,就会看到无边无际的天空,就不会再坚持自己原来的错误看法了)。
(5)指导朗读“你是弄错了。”(其中的“是”字,表示了肯定的、勿容置疑的语气)。
5.小结:这篇课文是一则寓言,它通过青蛙和小鸟对天的大小的争论,告诉我们一个道理:站得高,才能看得远;看问题,认识事物,站得要高,看得要全面,不然就会像青蛙那样犯了错误还自以为是。坐井观天,就是指青蛙坐在井里看天,把天看得只有井口那么大。以后,人们就用“坐井观天”这个成语来形容那些目光狭小、见识短浅,而又自以为是的人。
三、课堂练习。
1.指名学生分角色朗读课文。
2.填空:
青蛙坐在()看天,看到的天不过()那么大。小鸟站在()看天,看到的天()。
3.把课后的字写在田字格里。
将本文的word文档下载到电脑,方便收藏和打印。
真分数和假分数人教版五年级教案设计(通用21篇)篇七
教材分析:这两个例题是教学带分数连加、连减的方法。例5是带分数连加,与带分数加法的计算方法相同,几个加数可以一次通分,最后结果能约分的要约分,是假分数的要公成带分数。例6是带分数的连减。当被减数的分数部分不够减时,从被减数的整数部分使拿出1化成假分数,和原来的分数部分合进来还不够减时,就要从整数部分拿出2化成假分数,和原来的分数部分合起来再减。可以一次通分。
教学过程:
一、创设情境营造氛围。
把整数或带分数转化成假分数。p136准备题,让学生说一说怎么。
二、尝试探索建立模型。
1.教学例5。
a、出示例5。
b、看一看它们的分母相同吗?怎么办?
c、对计算的结果有什么要求?
d、看书p136。
e、说一说带分数连加的计算方法。
f、试一试p136。
2.教学例6。
a、出示例6。
b、看一看它们的分母相同吗?怎么办?
c、通分后再看看,分数部分够减了吗?不够减又要怎么办?
e、在刚才的过程中你有什么想说的吗?
f、小结。
g、试一试。
3、小结带分数连加连减的计算方法。
三、巩固深化拓展延伸。
1.计算练习p137、1--3。
2.说一说你在计算过程中还有什么新的发现?
3.小结:带分数连减时要注意什么?如何才能做得又对又快?
第二课时(练习)。
一教学内容。
教材第131页练习二十五的第4、5题。
二教学目标。
1.使学生认识复式折线统计图,了解其特点,根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。
2.培养学生分析问题的能力。
3.体会统计在生活中的作用。
三重点难点。
进一步归纳复式折线统计图的特点,了解条形统计图与折线统计图的区别。
四教具准备。
投影及多媒体课件。
五练习过程。
(一)完成教材第130灾练习二十五的第4题。
学生根据统计表,画出折线统计图,并根据统计图回答问题。
(二)导成教材第131负练习二十五的第5题。
小组进行讨论,两组数据分别用条形统计图和折线统计图表示更合适?为什么?
在学生讨论的基础上交流,老师提问:条形统计图和折线统计图.作用有什么不同?
小结:条形统计图不较容易比较各种数量的多少,折线统计图不但可以很快比较出各种数量的多少,还能看出数量增减变化的情况。
(三)课堂作业新设计。
下面是王强收集的2005年春节期间龙潭湖庙会和厂甸庙会游览的统计图。
2005年2-15日龙潭湖庙会和厂甸庙会游览人数统计图。
……厂甸庙会。
……龙潭湖庙会。
根据上面的统计图,回答问题。
(l)游览两个庙会的人数分别在哪一天到达峰值,然后开始下降?
(2)哪个庙会的游览人数上升得快,下降得也快?
(3)假如明年要游览庙会,你认为哪天比较好?
(4)从统计图中,你还能得到哪些信息?你还能提出哪些问题?
(四)课堂小结。
本节课,我们研究了复式折线统计图的特点和绘制方法。通过学习知道复式折线统计图可以容易看出两个数据的变化情况,并会根据需要选择合适的统计图来描述数据。
第六单元实力评价。
一口算。
1.2×3=0.36×10=2.4÷8=。
0.4÷0.8=0.25÷0.5=3×2.3=。
4.72-0.72=1.5×4=8.56×0=。
2÷0.2=1.2+3.5=5.6÷5.6=。
时的有1人。根据以上数据,把下面的统计表填写完整。
小东的同学一周上网情况统计表。
人数。
上网时间/时。
1.这10名同学一周上网时间的平均数在()小时到()小时之间。
2.算出这10名同学一周上网时间的平均数、中位数和众数。
三小北对15户居民一周用塑料袋的情况进行了调查,并制成了下表。
15户居民一周用塑料袋情况统计表。
户数111354。
每户用塑料袋只数12131415l617。
1.计算出15户居民一周用塑料袋只数的平均数、中位数和众数。
2.为了更好地保护环境,你有什么好的建议?
四根据下表中的数据,制成条形统计图。
某市运动会各区获奖牌情况统计表。
五选择。(把正确答案的序号填在括号里)。
1.希望小学要统计五年级各班同学为社会做好事的件数,应选用()比较好。
a.条形统计图b.折线统计图。
2.()最容易看出各种数量的多少。
a.条形统计图b.折线统计图。
3.表示一年里12个月的气温变化情况,选用()比较好。
a.条形统计图b.折线统计图。
六先在下面折线统计图的括号里填入适当的数,然后根据折线统计图回答问题。
某超市2005年电视销售情况统计图。
1.普通电视平均每个季度销售()台。
2.液晶电视平均每个季度销售()台。
3.()季度两种电视销售差距最大,是()台。
4.根据你获得的信息,预测明年两种电视的销售情况。
七根据下表中的数据,制成折线统计图。
2002年2003年2004年2005年。
万福商场。
东方商场。
……万福商场……东方商场。
真分数和假分数人教版五年级教案设计(通用21篇)篇八
p103。例51=2/2=3/3=4/4=5/5=……把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子。
p103。例6把2和5分别化成分母是3的假分数。
把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子。
真分数和假分数人教版五年级教案设计(通用21篇)篇九
本节课是在学习了真分数、假分数的认识和分数与除法的关系的基础上,教学把假分数化成整数或带分数。本节课分为四个环节:
一、从生活情境中导入,认识带分数;
二、探索新知,学会把假分数化成整数或带分数的化法;
三、实践应用,能灵活应用化法解决问题;
四、巩固总结。
在教学过程中,通过图形结合,让学生认识带分数的意义,会读写带分数,进而能在数轴上找到带分数相对应的点,把带分数和1比大小,从而能发现,带分数是假分数的另一种书写方式,它们之间是可以互化的'。整节课环环相扣,条理清楚,但是在教学把假分数化成带分数时没有图形结合,直接用分子除以分母,学生们能按照步骤依葫芦画瓢,但是个别学生不能真正理解它的方法,在做作业时出现了格式上的错误,需加强规范及辅导。
真分数和假分数人教版五年级教案设计(通用21篇)篇十
苏教版国标本小学数学第十册第36例1、“试一试”、“练一练”和练习六相关习题。这部分内容是在学生初步认识分数的基础上教学的,在三年级上册,学生已经学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;在三年级下册,学生有学习了把由若干个物体组成的一个整体平均分成几份,用几分之一、几分之几表示其中的一份或几份。本堂课主要引导学生抽象出单位“1”的概念,概括分数的意义,认识分数单位。例1中首先让学生看图写分数,激活学生对分数的已有认识。然后分两个层次:1、让学生认识到这里分别是把一个物体、一个图形、一个计量单位、一些物体组成的整体平均分的,抽象出单位“1”的概念;2、再让学生认识到分数是把单位“1”平均分成了几份,表示这样的几份?完整的概括出分数的意义。最后让学生认识分数单位的含义。
1、 使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进
一步理解分数的.意义。
2、 使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
理解分数的意义,认识分数单位。
理解、抽象出单位“1”。
课件
一、导入:
谈话:在三年级,我们曾经分两次认识分数。你能举例说说什么是分数吗?
二、新课
1、教学例1
(1)出示例1组图
提问:你能用分数表示各图中的涂色部分?
(学生独立完成在书上)
追问:你能说说每个分数各表示什么?
(同桌交流后班内汇报)
教师根据学生回答,用课件逐渐展示板书。
提问:第四个图与前三个图有什么不同吗?
引导学生明确:一个饼可以称为一个物体、一个长方形是一个图形、1米是一个计量单位,而第四幅图是把6个圆看作一个整体。
出示2/3
提问:把( )平均分成3份,表示这样2份的数?
学生讨论交流,班内汇报。
猜测:可能是一个物体、一个图形、一个计量单位或许多物体组成的一个整体。
说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
追问:在这几个图里,分别是把什么看作单位“1”,平均分成了几份?表示这样的几份?
提问:你能试着说说什么是分数吗?
教师引导概括分数意义。
(2)操作:铅笔、硬币、钟面、桃子图案
提问:你能用手中的物品表示2/3吗?你是怎样想的?
学生小组合作用提供的物品表示并交流想法。
真分数和假分数人教版五年级教案设计(通用21篇)篇十一
片段:
出示1-1/4-1/3和1-(1/4+1/3)让学生尝试的独立解决。
反馈情况:
生1:1-1/4-1/31-(1/4+1/3)。
=4/4-1/4-1/3=1-(3/12+4/12)。
=3/4-1/3=1-7/12。
=9/12-4/12=12/12-7/12。
=5/12=5/12。
生2:1-1/4-1/31-(1/4+1/3)。
=3/4-1/3=1-(3/12+4/12)。
=9/12-4/12=1-7/12。
=5/12=5/12。
生3:1-1/4-1/31-(1/4+1/3)。
=12/12-3/12-4/12=12/12-7/12。
=5/12=5/12。
交流讨论后发现这些算法都是对的。
师:同学们你们真了不起,做出了这么多方法。每一种解法,你更喜欢哪种算法呢?
学生交流。
通过讨论,使学生明确:分数加减混合运算顺序与整数、小数加减混合运算顺序相同,没有小括号的,要从左往右依次计算;有小括号的要先算小括号里的。参加运算的几个分数,可以分步通分,分步计算,也可以一次通分再计算。
以上是我上分数加减混合运算时的一个教学片断。教学一开始,作为老师我没有做更多的讲解,只是让学生自己去尝试计算。没想到学生反馈上来的运算方法这么多。有的学生按照整数加减运算的顺序计算,两个两个数通分相加减。有的学生把能口算的过程省略,避免了运算过程的繁琐。有的学生把三个数先一起进行通分,然后再进行计算。有的学生在计算1/4+1/3时先通分再计算,有的学生则用上节课找到的规律进行口算得出结果。然后我再让学生观察、比较、交流最优秀,最合理的方法,同时交流加减混合运算的运算顺序。
我觉得计算题教学已不仅仅是讲授方法,学生练习的模式。计算题的教学因突出学生的独立探索,操作发现,总结规律等各种数学思维能力的培养。在计算题的教学中要体现算法的多样性,能够引导学生通过典型题的练习发现其中最优秀,最合理的方法,从而掌握计算的正确方法,理解算理,但是并不要求学生熟记法则。
真分数和假分数人教版五年级教案设计(通用21篇)篇十二
1、老师有4个苹果,平均分给2个小朋友,每个小朋友分多少个?(生答)如果平均分给4个小朋友,每个小朋友分多少个?(生答)教师提示,再用整数表示可以吗?(板书课题:分数)。
2、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。
3、正是这样的实际需要,产生了分数。
4、教师出示图片,把一个圆平均分成4份,其中一份涂了红色,那么涂色部分怎么表示呢?请同学们说出都知道这个分数的什么?如这个分数表示的意义,它的各部分名称,以及自己的课外知识等。
5、我们已经初步认识了分数,这一节课我们继续学习分数的意义。(板书补充课题:的意义)。
探索交流,解决问题。
(1)动手操作。
让学生课前准备了3种学习材料:一张长方形纸、一根绳子、四个苹果。要求:先通过分一分、画一画,表示出,然后同桌相互说一说,你是怎么表示出来的。
(2)学生上台展示成果:
a、学生甲:表示把一个长方形纸平均分成4份,取其中的1份,可以说取了这块月饼的。
学生乙:还可以表示把一根绳子平均分成4份,其中的1份,就是这根绳子的。学生丙:还可以把四个苹果平均分成4份,其中的的一份,就是这根绳子的。
b、课件出示判断下面的分数表示涂色部分是否正确。
(3)师生交流,得出意义:
a、回想一下刚才我们都是怎样表示的呢?(学生尝试回答)都是把他们平均分成4份,取其中的一份,就是……的。(板书:分数平均分若干份其中的一份或几份)。
b、课件出示3幅熊猫图片,用分数表示出涂色的部分。
c、请同学们随便写一个分数,和同桌说一说它表示的意义。
2、单位“1”
(1)刚刚我们在平均分的时候是把一个长方形,一根绳子,4个苹果看作了一个整体,也就是单位“1”。
请同学们找出生活中有哪些可以看做单位“1”。
(三)巩固应用,内化提高:
1.知识应用。
(1)是把单位“1”平均分成___份,表示这样____份的数。
2)把一个苹果平均分成5份,每份是这个苹果的(),单位“1”是指()。
(3)把20本书分给4个小组,每组分这些书的(),单位“1”是指()。
2、练习(课件出示)。
如果每个小正方形用数“1”来表示,那么大正方形用()来表示。
如果两个小正方形用数“1”来表示,那么大正方形用()来表示。
如果把大正方形看作一个整体,用单位“1”来表示,那么每个小正方形用()来表示。
3、下面每个图中涂颜色的小正方体各占整体的几。
分之几?把什么看作单位“1”?
4、观察下面图形,阴影部分占长方形的(),占正方形的(),占整个图形的()。
仔细观察上面的3个分数,他们有什么特点。
把单位以平均分成若干份,表示其中一份的数叫做分数单位。
5、填空并说出下列分数的分数单位。
一堆糖,平均分成2份,每份是这堆糖的()。
平均分成3份,2份是这堆糖的()。
平均分成4份,3份是这堆糖的()。
平均分成6份,5份是这堆糖的()。
6、拓展练习。
老师这有12个小圆片,你能找出它的是多少片吗?它的呢?它的呢?
(四)回顾整理,反思提升。
这节课我们学习了什么?师生共同回忆总结。
1.分数的意义--------要注意的问题。
(1)单位1可以是一个物体,也可以是一个整体或是一个计量单位.
(2)必须要把单位1平均分.
(3)分数单位:指名说说什么叫分数单位.
真分数和假分数人教版五年级教案设计(通用21篇)篇十三
(一)理解并掌握比较分母相同或分子相同的两个分数大小的方法。
(二)在学习比较分数大小的方法的过程中加深对分数意义的理解。
(三)培养学生动手操作,观察比较和概括的能力。
教学重点和难点。
(一)比较分数大小的方法。
(二)区别比较同分母分数大小和同分子分数大小的方法。
教学用具。
教具:投影片,两张完全相同的正三角形纸片、长方形纸片。
学具:每位同学两张同样的圆形纸片、长方形纸片。
教学过程设计。
(一)复习准备。
1.说出表示图中阴影部分的分数(投影片出图)。
2.口答填空:(投影片)。
(1)把一块蛋糕平均分成四份,每份是它的();
3.比较每组中两个数的大小。并说明理由。
7和932和29。
(要求说出9比7多2个自然数单位,32比29多3个自然数单位。)。
教师:两个整数,我们可以根据它们包含自然数单位的多少来比较大小,那么分数又怎样来比较大小呢?这就是这节课研究的问题。板书课题:分数大小的比较。
(二)学习新课。
1.比较同分母分数的大小。
(1)教师出示两张完全相同的正三角形纸片,请同学说一说如何判断它们的大小?
(把两张纸重叠放在一起,完全重合,说明相等。)。
教师把两张正三角形贴在黑板上。问:请说出阴影部分各是多少?
(2)教师用小黑板条贴出线段图,请同学口答括号部分是多少?
请学生两人一组,比较每组中两个分数的大小,并说明理由。教师巡视。
(3)教师:请观察上面比较的各组分数,同组的两个分数有什么共同处?(分母相同,分数单位相同。)。
教师:分母相同的两个分数如何比较大小?
学生口答后教师小结并板书:
分母相同的两个分数,分子大的分数比较大。
练习:课本93页做一做。请两三位同学写投影,其余同学填在书上。集体订正。
比较下面每组中两个分数的大小。
2.比较同分子分数的大小。
(1)请同学取出自己准备的两张圆形纸片。并请比较它们的大小。(同样大。)。
学生分小组讨论,汇报后,教师表扬“圆形纸片同样大,也就是单位“1”相等,平均分的份数越多,每一份反而小。”这种想法很好。
并说明道理。
教师:请同学用两张完全相同的长方形纸折一折或画一画,比较。
学生动手折或画,小组讨论说道理。
老师:说一说下面各组分数中,哪一个较大?为什么?
学生口答后教师板书:分子相同的两个分数,分母小的分数比较大。
练习:课本94页做一做。请两位同学写投影片,其余同学填书上。集体订正。
学生口答的后教师板书归纳:
口答练习:比较下面各组分数的大小。(投影片)。
(三)巩固反馈。
1.请自己说出两个同分母分数,比较它们的大小。
2.请一位同学说出两个同分子分数,另一位同学比较它们的大小。
4.判断正误,并说明理由。
5.下面的括号里能填哪些分数?
(四)课堂总结与课后作业。
1.同分母分数比较大小的方法。同分子分数比较大小的方法。
2.作业:课本95页练习二十,1,2,3。
课堂教学设计说明。
本节课的内容,是在学生已经学习过看图形比较同分母分数的大小,和分子是1的异分母分数的大小的基础上进行的。比较的分数范围扩大到同分子的异分母分数。同分母分数和同分子分数比大小的方法,是比较分数大小的最基本的方法,基本方法必须牢固、准确地掌握。教案设计时,不仅考虑到让学生掌握比较的方法,更注重了让学生从分数的意义、分数单位的意义上来理解“为什么要这样比”的算理,所以教学过程中,安排了直观图形、动手折叠等,使学生对算理的理性认识,有充分的感知基础,同时也培养了学生动手操作,观察比较和概括的能力。
新课教学分为三部分。
第一部分学习同分母分数大小的比较。共分为三层。通过直观图形启发学生从分数单位的角度来理解比较方法的算理;利用线段图来巩固比较方法与算理;引导学生概括比较方法和进行练习。
第二部分学习同分子分数大小的比较。共分两层。通过学生操作,让学生从感性上增强对分母表示平均分的份数的认识,从而理解“看分母”的算理;引导学生归纳比较的方法和进行练习。
第三部分对比同分母分数和同分子分数比大小的方法,找出不同点,并通过练习进行强化。
板书设计。
真分数和假分数人教版五年级教案设计(通用21篇)篇十四
(一)认识公倍数和最小公倍数。
(二)理解求两个数的最小公倍数的算理,掌握方法。
(三)通过教学,培养学生的比较推理和抽象概括的能力。
教学重点和难点。
(一)几个数的公倍数和最小公倍数的概念。
(二)理解求最小公倍数的算理、掌握计算方法。
教学用具。
投影片,有数轴的小片子。
教学过程设计。
(一)复习准备。
教师:请说出几个4的倍数,几个6的倍数。(学生口答教师板书。)。
46。
812。
1218。
1624。
2030。
…………。
教师:我们列出的两组倍数,都分别是4或者是6一个数的倍数。前面我们已研究过两个数的约数,今天来研究两个数的倍数。
(二)学习新课。
1.公倍数与最小公倍数。
(1)投影片出示数轴。
老师:请在数轴上分别找出表示4的倍数和6的倍数的点。
学生用两种不同颜色的点在自己的数轴(小片子)上分别描出这些点。教师:从数轴上可以看出4和6公有的倍数是哪些?最小的是几?有没有最大的?(学生口答后,老师再在投影片上表示出来。)。
教师:想一想我们已经学过的公约数和最大公约数,谁能给几个数公有的倍数,和其中最小的一个取个名字?(公倍数、最小公倍数。)。
教师:请说一说什么是公倍数和最小公倍数?(学生口答老师板书。)板书:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
教师:研究两个数的倍数,主要是研究公倍数和最小公倍数。这节课我们就学习这个内容。板书课题:最小公倍数。
教师:为什么集合圈里要写上省略号?(一个数的倍数是无限的,几个数的公倍数也是无限的。)。
(3)练习:(投影片)。
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几。
请一位同学填在投影片上,其余同学填在书上。集体订正。
2.求两个数的最小公倍数。
教师:上面我们用列举的方法找到两个数的最小公倍数,下面来研究如何直接求出两个数的最小公倍数。
请回忆一下,求最大公约数是通过什么途径研究的?(分解质因数。)。
(1)教师:我们也从分解质因数入手,看一看一个数和它的倍数的质因数之间有什么关系。(用口答复习题的板书,把4,6的倍数逐个分解质因数。)。
板书:
4=2×26=2×3。
8=2×2×212=2×2×3。
12=2×2×318=2×3×3。
16=2×2×2×224=2×2×2×3。
20=2×2×530=2×3×5。
24=2×2×2×336=2×2×3×3。
…………。
学生口答后,教师板书:(或贴出小黑板)。
4的倍数的质因数包含了4的全部质因数;6的倍数的质因数包含了6的全部质因数。
教师:12是4的倍数吗?请说明理由。
(2)板书例2,求18和30的最小公倍数。
请用短除式分解质因数。(学生口答,教师板书。)。
学生口答后,老师用红色粉笔将2,3框上,说明这是公有的质因数,其余的3是18独有的,5是30独有的质因数。
学生讨论时老师巡视。然后学生总结,老师板书:18和30的最小公倍数是:
2×3×3×5=90。
(3)教师指板书问:为什么18和30全部公有的质因数只各选一个数(即“代表”)?
学生讨论后归纳:为了保证倍数最少。
教师:请再说一说几个数的最小公倍数里包含哪些质因数?(学生口答后教师板书。)。
(4)老师:利用分解质因数的方法可以求出两个数的最小公倍数,为了简便,通常用一个短除式来分解。板书介绍写法。
方法:用公有的质因数2去除,用公有的质因数3去除,商3,5为互质数。把所有的除数和最后的商乘起来。
练习:求30和45的最小公倍数。(一位同学写投影片,其余同学写本上。)。
订正时要求说出过程。教师:除数是什么质因数?商呢?
(公有的,各自独有的。)。
教师:请说一说用短除式求两个数的最小公倍数的方法?
引导学生归纳:先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
(三)巩固反馈。
1.口答:(投影片)。
10的倍数();15的倍数();
10和15的公倍数();10和15的最小公倍数()。
2.口答:(投影片)。
60=2×2×3×5;90=2×3×3×5;
60和90公有的质因数是();
60独有的质因数是();
90独有的质因数是()。
4.用短除式求下面两组数的最小公倍数。
18和2736和42。
5.讨论解答:
a=2×5×7b=()×()×5。
a,b的最小公倍数是2×3×5×7=210。
(四)课堂总结和课后作业。
1.公倍数,最小公倍数。两个数的质因数里包含哪些质因数。
2.用短除法求两个数的最小公倍数的方法。
3.作业:课本75页练习十五,1,2。
课堂教学设计说明。
本节课根据教材编排顺序,先利用倍数的旧知识,和数轴表示数引入公倍数和最小倍数概念,再用集合图表示来加强概念的理解。求最小公倍数的方法,关键是要让学生理解几个数的最小公倍数里包含了全部公有的质因数和各自独有的质因数。教学中,安排学生借助分解质因数式子进行对比讨论,使学生认识到几个数的公倍数里,要包含这几个数的全部质因数,几个数的最小公倍数里,公有的质因数只选一次,即是选“代表”,否则将不是“最小”。在学生理解了算理、了解了算法后再介绍用短除式求最小公倍数的一般形式,进而归纳出求解的步骤。
新课学习分两部分。
第一部分学习公倍数和最小公倍数的概念。
第二部分学习求两个数的最小公倍数。
板书设计。
真分数和假分数人教版五年级教案设计(通用21篇)篇十五
(一)使学生认识真分数和假分数,并掌握它们的特征,了解它们之间的联系和区别。
(二)使学生理解并掌握假分数化整数的方法。
(三)培养学生观察,比较和抽象概括的能力,渗透转化的数学思想。
教学重点和难点。
(一)真分数和假分数的特征。
(二)等于1的假分数。
教学用具。
投影片,图片,小黑板。
教学过程设计。
(一)复习准备。
1.在括号里填上表示图形中阴影部分的分数:
2.说出表示图形里阴影部分的分数,再说出它的分数单位,它有几个这样的单位。
3.用分数表示直线上的点。
教师:把直线上0到1这段看作单位“1”,1到2,2到3之间也都是单位“1”。
教师:把单位“1”平均分成了几份?表示这样的1份,2份,3份,4份的数各是多少?
教师:要表示这样的5份是几分之几?7份是几分之几?
教师依次在数轴上点出几个点,请学生用分数表示。学生口述教师。
教师:(指板书)根据分数的意义,我们写出了很多的分数,下面来研究分数的分子和分母的大小关系。板书课题:真分数和假分数。
(二)学习新课。
1.认识真分数和假分数。
(1)教师:请观察黑板上的分数,比较每个分数中分子、分母的大小。试按一定的原则把这些分数分组。
学生小组讨论后汇报。根据学生口答老师板书:
教师:我们把分子比分母小的分数叫做真分数。分子比分母大或者分子和分母相等的分数,叫做假分数。板书:第一组后补出“真分数”,在第二、三组后补出“假分数”。
教师:请说出3个真分数,3个假分数。
线段数。说一说这两个分数的意义?这样的分数等于多少?(等于1。)。
学生讨论,汇报后老师板书在真分数后补出:真分数小于1;假分数后补出:假分数等于或大于1。
学生口答后,教师小结:由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类。所以这节课我们研究的是分数的分子和分母的大小关系,而课题却是真分数和假分数。
练习:(投影片)。
1.下面分数中哪些是真分数?哪些是假分数?
2.把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上。(请两位同学写在投影板上,其余同学写在本上。)。
3.把假分数化成整数。
些分数,问:它们有没有共同的特点?
教师:这些假分数还可以用什么数来表示?
教师:这些假分数实际上就是整数。我们可以用什么方法把它们化成整数?这样计算的依据是什么?(分子除以分母,分数与除法的关系。)。
学生口答教师板书:
学生口答教师板书,要求说出算理。
教师:说一说怎样把假分数化为整数?
本上。)。
(三)巩固反馈。
1.说出四个分母是7的真分数。
2.说出3个分数值是1的假分数。
3.说出两个分母是9,分数值比1大又比2小的假分数。
4.把下面这些分数化为整数。(口答)。
5.判断正误,并说明理由。
(1)分母比分子大的分数是真分数;()。
(2)假分数的分子比分母大。()。
数?
(四)课堂总结与作业。
1.真分数,假分数,假分数化整数的方法。
2.作业:课本100页练习二十一,1,2,3。
课堂教学设计说明。
本节课要通过真分数,假分数的认识,使学生能全面理解分数的概念。所以教学中紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的概念和特征即为水到渠成。在学生掌握了真分数、假分数概念后,再通过设问,让学生讨论出假分数化整数的方法及算理。
新课教学分两部分。
第一部分学习真分数,假分数概念。分三层。让学生通过观察、比较、讨论、认识分子和分母大小关系的三种情况,了解真分数,假分数概念;引导学生比较分数值与1的大小关系,认识真分数和假分数的特征;利用数轴进一步让学生认识真分数、假分数与1的关系,掌握它们的分界点是1。
第二部分学习把假分数化成整数的方法。分为两层。让学生通过观察认识到这些假分数的分子都是分母的倍数;理解和掌握假分数化整数的方法。
板书设计。
真分数和假分数人教版五年级教案设计(通用21篇)篇十六
(二)渗透转化的数学思想。
(三)培养学生对计算题审题的习惯。
教学重点和难点。
(二)“退整化分”的带分数减法。
教学用具。
投影片、流程图。
教学过程设计。
(一)复习准备。
1.口答填空:(投影片)。
2.直接说出下面各题的结果。(投影片)。
数。)。
教师:我们已经学过异分母分数相加、减,也学过了同分母的带分数相加、减,今天来学异分母的带分数相加、减。(板书课题:异分母的带分数加、减法。)。
(二)学习新课。
想一想,如何用已经学过的旧知识来计算?请试算出结果。
学生讨论、试算。口答,教师板书:
教师用红色粉笔虚线框住的一步,运算熟练后,可以不写出来。
教师:通分后出现了什么问题?教师:出现了被减数分数部分不够减,有什么办法解决这个问题?(请小组讨论。)学生讨论后汇报,教师板书:
另解:
教师:请对比这两种算法,你自己感觉哪种算法好算,就用哪种方法来计算。
(3)口答练习:(学生口答教师板书。)。
教师:请说一说异分母的带分数减法的计算方法。
教师:计算带分数减法时,要注意什么?
学生口答后教师板书:被减数分数部分不够减时,要从整数部分退1化成假分数再减。
(4)教师:带分数相加、减的方法我们都知道了,它们的计算过程现在用图按顺序标出来:(贴出图)。
教师:请按图说一说计算带分数减法的过程。然后按图所示的顺序计算下面两题:
请几位同学用投影片做,集体订正。
2.练习:(投影片)。
根据学生口答,投影改正:
口答练习:(说出过程。)。
教师:这两道口答题中,整数部分退的1化成的假分数,分母如何确定的?(与减数分母相同。)。
(2)看下面这题的计算,对吗?为什么?
(3)下面这题的计算对吗?有没有错点?
教师:通过上面几题的讨论练习,你有什么体会?
请学生说自己的体会。最后教师归纳:
做计算题也要认真审题,每做一步都要分析这一步的具体条件,以此来确定这一步应该做些什么。计算中要养成一步一检查的习惯。
(三)巩固反馈。
1.口算下面各题。
2.判断正误。并说明理由。
3.笔算。(请四位同学写投影片。)。
(四)课堂总结与课后作业。
2.作业:课本136页练习三十,1,3,4。
课堂教学设计说明。
本节内容,是在学习过异分母分数加、减法和同分母的带分数加、减法的基础上进行的。利用旧知识的迁移,带分数加、减法的算法及算理很容易掌握,所以教学中以学生自学为主。由于带分数退位减计算中容易出错,教学中安排了较多的例题和练习,尤其是流程图的讨论,对退整化分,结果的化简等易错点进行有针对性的练习,目的是提高学生计算的熟练、准确度。在教学中还安排了易错题的讨论来帮助学生养成良好的审题习惯和检查的习惯。
新课学习分为两部分。
第一部分学习异分母带分数加、减法的计算方法。共分四层,通过试算,掌握带分数加法的计算方法;试算带分数减法及退位减的方法讨论;小结带分数加、减法的计算法则;通过按流程图进行计算,进一步掌握带分数加、减法的计算方法。
第二部分是针对计算中的易错点进行练习。
板书设计。
真分数和假分数人教版五年级教案设计(通用21篇)篇十七
真分数与假分数。
分数的基本性质。
最大公因数与约分。
最小公倍数与通分。
分数与小数的互化。
二、教学目标。
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
三、编排特点。
1.多侧面地展现了分数的来源。
现实需要和数学需要。
2.把因数、倍数的有关知识与分数的相关知识结合起来教学。
3.关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
4.部分内容作了适当的精简处理或编排调整。
(1)求一个数是另一个数的几分之几的实际问题,原来安排在分数与除法的关系之后,现在挪后。
(2)分数大小比较,不单列一段,而是与通分结合在一起学习。
(3)删去了原来第2节中把整数或带分数化成假分数的内容。
四、具体编排。
1.分数的意义。
分数的产生。
通过测量与分物,引入分数,使学生感悟分数是适应客观需要而产生的。
分数的意义。
(1)单位“1”既可以表示一个物体,也可以表示一些物体,体现了部分与整体的关系。同一个分数可以表示不同的具体量,体现了分数的抽象性。
(2)分数单位的概念。
分数与除法。
(1)体现了分数的数学来源:计算时往往不能正好得到整数的结果,常用分数来表示。可从数系的扩展角度来认识分数的产生。
(2)分数与除法的统一点:对一个整体进行平均分。
(3)为后面的假分数以及把假分数改写成整数、带分数作准备。
例1。
把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。
例2。
(1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是,在这儿,可以用两种方式来理解:a、把1平均分成4份,每份是,这样的3份是。b、把3平均分成4份,每份是。
(2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得块,3块月饼平均分给4人,每人分得3个块,是块。
分数与除法关系的总结。
根据例1和例2总结出分数与除法的关系。在这儿,可以把分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。
(1)可以解决整数除法中商不是整数的情况。
(2)分数与除法可以互逆,可看作同一种运算。
(3)因为除数不能为0,所以分母不能为0。
2.真分数与假分数。
以前学生只接触过分子比分母小的分数,现在介绍分子和分母相等或分子大于分母的分数,可以让学生更全面地认识分数。
例1。
让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。
例2。
让学生重点观察分数中分子和分母的大小,并把它们和1的大小比较,给出假分数的概念。需指出这里的单位“1”是一个圆而不是所有圆的总体。
例3。
(1)从生活语言“一个半”引出带分数的写法及读法。
(2)让学生仿照着写出其他的分数。
例4。
(1)要把假分数化成整数或带分数是因为要培养学生对于分数的数感。
(2)化的时候有不同的方式。
a.根据分数的意义:4个就是1。
b.利用直观图。
c.利用分数与除法的关系。
(3)可引导学生总结假分数化成整数或带分数的一般方法。
3.分数的基本性质。
分数的基本性质是约分、通分的基础。
例1(分数基本性质的推导)。
(1)通过直观图观察得出三个分数相等。
(2)从两个方向观察三组分数的分子、分母的变化规律。
(3)通过自主举例,从具体到一般,总结出分数的基本性质。
(4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。
例2(分数基本性质的应用)。
把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。
4.约分。
与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。
最大公因数。
例1(公因数、最大公因数的概念)。
(1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。
(2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。
(3)用集合的形式表示出因数、公因数,与第二单元相响应。
例2(最大公因数的求法)。
(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在“你知道吗”中进行介绍。
(2)多种方法。
a.分别列出两个数的所有因数,再找公因数。
b.从较小的数的最大因数开始找,看是不是另一个数的因数。
也可引导学生想出不同的方法,如:从较大的数的最大因数开始找,然后和上面的b方法进行比较,看哪种更合适。
(3)让学生通过观察,找出公因数和最大公因数之间的关系:所有的公因数都是最大公因数的因数。
做一做。
让学生接触两类特殊数的最大公因数:两数存在因数和倍数的关系,两数互质。
约分。
例3(最简分数的概念)。
(1)通过实际情境引出两个分数(根据不同的素材引出:具体的米数、分成四段)。
(2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。
例4(约分)。
(1)原理:利用分数的基本性质把分数改写成相等的最简分数。
(2)方法多样:可以逐步约分,也可直接用最大公因数约。
(3)给出约分的简便写法。
5.通分(编排方式与约分相似)。
与九义教材相比,把公倍数、最小公倍数移至此,更体现了求公倍数的必要性。
最小公倍数。
例1(公倍数、最小公倍数的概念)。
(1)利用实际情境(用长方形铺满正方形且必须是整块数)引出求公倍数的必要性。
(2)借助操作进一步理解正方形的边长必须既是长方形长的倍数,又是宽的倍数,从实际问题转入数学问题。
(3)用集合的形式表示出倍数、公倍数,与第二单元相响应。
例2(最小公倍数的求法)。
(1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最小公倍数的方法,只在“你知道吗”中进行介绍。
(2)多种方法。
a.分别列出两个数的倍数,再找公倍数。
b.从较大的数的最小倍数开始找,看是不是另一个数的倍数。
也可引导学生想出不同的方法,如:从较小的数的最小因数开始找,然后和上面的b方法进行比较,看哪种更合适。
(3)让学生通过观察,找出公倍数和最小公倍数之间的关系:所有的公倍数都是最小公倍数的倍数。
做一做。
让学生接触两类特殊数的最小公倍数:两数存在因数和倍数的关系,两数互质。
通分。
例3(分数大小的比较)。
(1)通过实际情境引出两个分母相同的分数的大小比较。
(2)和的比较方法多样(三年级上册已经有了一定基础)。
a.根据分数的意义。
b.根据分数单位的多少。
(3)让学生通过一些特例,自行总结分母相同或分子相同的分数的大小比较方法(三年级上册有了分子都是1的分数大小比较方法)。
(2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。
例4(通分)。
(1)从实际情境引入,出现分子、分母均不相同的情况,比较大小时产生认知冲突。
(2)原理:利用分数的基本性质把两个分数改写成分母相等的分数。
(3)通分时,可以把分母都化成两个分母的最小公倍数,也可以不是最小公倍数。
(4)作为比较大小的方法,还可以把两个分数改写成分子相同的分数。
(5)区别通分与约分:约分是对一个分数的运算,通分是对两个分数的运算。
6.分数和小数的互化。
例1(小数化分数)。
(1)用小数和分数两种不同的方式表示同一个除法运算的结果,建立起两者的联系。
(2)利用小数的意义给出小数化分数的一般方法。一位小数由教材给出范例,两、三位小数由自己类推。
例2(分数化小数)。
(1)创设六个数比较大小的数学情境。
(2)分数化小数的方法多样;。
a.分母是10、100……的,利用小数的意义来化。
b.分母不是10、100……的,可以化成分母是10、100……的,也可以利用分数与除法的关系来化。
整理和复习。
分数的概念。
分数的分类。
分数的基本性质及其运用。
分数与小数的互化。
五、教学建议。
1.充分利用教材资源,用好直观手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
真分数和假分数人教版五年级教案设计(通用21篇)篇十八
教学难点:
能化成有限小数的分数的特点。
二、说学情:
根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;
2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。
四、说教法:
一、观图设疑,提出问题幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。二、出示课题,自主探究例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,纠正并提问:
(1)把分数化成小数,其结果有几种情况?(启发学生说出有限小数与无限小数)。
(2)能化成有限小数的分数有什么特点呢?(学生以小组为单位,讨论并请学生代表回答,教师适时指导。)。
三、总结规律、形成概念通过学生积极讨论,充分调动了学生的积极参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维,引导学生总结出:有的分数可以化成有限小数,有的分数不可以化成有限小数,请同学们再看一看什么样的分数可以化成有限小数?什么样的分数不可以化成有限小数?启发学生从分母的最小公倍数着手。最后总结出:一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数就可以化成有限小数,否则就不能化成有限小数。例题2,请把下列小数化成分数,说说你是怎样把小数化成分数的?0.06,0.4,1.8,2.45,1.465,归纳:(学生为主,教师点拨)。
1、原来有几位小数,就在1后面写几个零作分母。原来的小数去掉小数点作分子。
2、小数化成分数后,能约分的要约分。常用的因数是2和5。对于小数如何化成分数的题目,课前了解到学生在小学时已学过把小数如何化成分数的方法,因而以学生练习为主,加以操练并巩固,有错误的及时纠正。
四、学会运用,巩固新知例题3,将,0.54按从小到大的顺序排列.此题主要考查学生对今天学过的内容如何应用,是把小数化成分数好还是把分数化成小数比较大小好呢?最后回到今天刚开始的问题能解决吗?哪个行星的直径最大?可以通过什么方法知道?鼓励学生用多种方法比较大小,开拓学生的思路。
反馈练习:
1、将下列小数化成分数:0.48、1.05、3.242、将下列分数化成小数:(不能化成有限小数的将其保留三位小数)。
五、全课小结:
这节课,通过以上环节的'教学设计,既遵循了概念教学的规律,又符合六年级学生的认知特点,指导学生观察、引导概括,获取新知;同时注重培养学生的发散性思维。在教学过程中让学生动口、动脑为主的学习方法,使学生学有兴趣、学有所获。教学设计说明:本节课主要是让学生理解分数与小数的互化的方法以及总结出能化成有限小数的最简分数的特点。学会分数与小数互化的方法,为以后学习分数与小数的混合运算作准备.本课首先从问有哪九大行星入手并从数据中如何比较它们的大小,引起学生的好奇和注意,并能主动参与学习活动,在活动中发挥自己的主体作用,也有利于激发学生的学习兴趣,让学生积极参与知识的形成过程.在教学中,教师引导学生以分数和小数互化的方法为出发点,调动学过的有关知识,让学生亲自参与分数与小数互化的推理过程,体验数学知识的联系,并在此基础上,通过观察、讨论,从中发现能化成有限小数最简分数的特点的规律,并运用这些知识来解决多个分数与小数的大小比较问题。在学生参与了分数与小数互化的推理过程,掌握了互化的方法后,重点放在总结能化成有限小数的最简分数的特点上,学生通过练习,归纳总结,提高了学生对知识的掌握水平。培养学生的综合能力。
真分数和假分数人教版五年级教案设计(通用21篇)篇十九
(一)知识与技能。
通过教学,使学生初步理解同分母分数加、减法的算理,掌握同分母分数加、减法的计算法则,并能正确进行计算。
(二)过程与方法。
通过小组合作学习,运用知识的迁移,理解同分母分数加、减法的意义,能运用分数加、减法解决简单的数学问题。
(三)情感态度和价值观。
体验生活中的数学乐趣,培养学生的推理、归纳能力和合作学习能力。
二、教学重难点。
三、教学准备。
多媒体课件,学具。
四、教学过程。
(一)情境导入,引出课题。
课件出示主题图:一张饼平均切成了8块,爸爸吃了其中的3块,爸爸吃了腾蛟二小教学设计+教学反思+培训总结”title=“洪峰腾蛟二小教学设计+教学反思+培训总结”/张饼;妈妈吃了其中的1块,妈妈吃了腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/张饼。
1.自主探究。
(1)从图中,你获得了哪些数学信息?
(2)根据这些信息,你能提出什么数学问题?
教师根据学生的反馈,选择性地板书两个问题,并请学生列式解答。
2.沟通旧知。
【设计意图】从学生熟悉的日常生活情境引入教学,把知识的学习转化为解决现实生活中的问题,沟通了数学与现实生活的密切联系,激发学生的学习兴趣。同时让学生根据情境所提供的信息提出问题,培养学生的问题意识。
(二)探究新知,明确算法。
出示问题1:爸爸和妈妈一共吃了多少张饼?
(1)你能计算出结果吗?请试一试。
先独立计算,再小组合作,在学具上涂一涂、画一画验证计算结果。
(2)学生汇报交流。
方法一:腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/。
教师:仔细观察这个算式,为什么分母没发生改变?分子又是怎样得到的'?
结合课件演示,引导发现:腾蛟二小教学设计+教学反思+培训总结”title=“洪峰腾蛟二小教学设计+教学反思+培训总结”/和腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/的分母相同,也就是分数单位相同,都是腾蛟二小教学设计+教学反思+培训总结”title=“洪峰腾蛟二小教学设计+教学反思+培训总结”/。所以,可以把3个腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/和1个腾蛟二小教学设计+教学反思+培训总结”title=“洪峰腾蛟二小教学设计+教学反思+培训总结”/直接加起来,它们的和等于4个腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/,也就是腾蛟二小教学设计+教学反思+培训总结”title=“洪峰腾蛟二小教学设计+教学反思+培训总结”/。
方法二:腾蛟二小教学设计+教学反思+培训总结“title=”洪峰腾蛟二小教学设计+教学反思+培训总结“/。
教师:观察计算结果,有什么不同?(提醒学生注意:计算的结果,能约分的要约成最简分数)。
方法三:化成小数计算。
引导:这种方法有一定的局限性,在适用性方面不如上述的方法。
板书完整的计算过程:
(3)根据刚才的计算过程,说说怎样计算同分母分数的加法?
小结:同分母分数相加,分子相加,分母不变。
【设计意图】巧借学具,数形结合,深刻理解同分母分数加法的算理和计算方法,又为学生探究同分母分数减法进行了铺垫。同时借助已有知识经验,理解结果不是最简分数的应化成最简分数。
2.自主学习同分母分数减法的算法。
出示问题2:爸爸比妈妈多吃了多少张饼?
(1)学生尝试,独立完成。
(2)学生反馈,分析算理。
教师:计算时为什么分母不变?计算结果应该注意什么?
板书完整的计算过程:
(3)引导学生归纳同分母分数减法的计算方法。
小结:同分母分数相减,分子相减,分母不变。
(1)观察上面两个算式,有什么共同点?
学生交流讨论,共同归纳概括。
小结:同分母分数相加减,分母不变,只把分子相加、减。
【设计意图】让学生在自主学习、自主探索的过程中,化被动为主动,变接受为发现,获得自主探索的成功感受。同时,总结归纳出计算法则,让学生进一步感受同分母分数加减法的计算方法,培养学生的归纳、概括能力。
(三)知识应用,巩固提升。
1.课件出示教材第90页“做一做”第1题。
2.课件出示教材第90页“做一做”第2题。
说说你是怎样计算的?计算结果要注意什么?
3.春蕾小学图书馆中各类图书情况如图所示。
真分数和假分数人教版五年级教案设计(通用21篇)篇二十
(一)教材地位和作用。
(二)教学目标。
知识与技能。
(1)了解圆与圆的五种位置关系,掌握运用圆心的距离的数量关系或用圆与圆交点个数来确定圆与圆的五种位置关系的方法.
(2)了解切线、割线的概念.
过程与方法。
通过生活中的实际事例,探索圆与圆的五种位置关系。
情感态度与价值观。
(三)重点、难点。
重点:利用数量关系揭示圆与圆的位置关系。
难点:利用圆与圆位置关系解决实际问题。
二、教法学法。
教法的设计情境创设设疑启发引导交流探索创新。
学法的设计观察猜想自主探究合作交流归纳创新。
三、教与学互动设计。
1.情境引入。
2.合作探究。
3.得出结论。
4.巩固新知。
5综合拓展。
6布置作业。
1.情境引入。
同学们会各抒己见,老师不要过早的下结论,而是让同学们在下一环节继续探究。
2.合作探究。
在这一环节我让同学们拿出事先做好的圆,让他们小组合作探究圆和圆之间到底有几种位置关系。
老师巡回指导。
3.得出结论。
为了让同学们更加深刻的理解圆与圆的五种位置关系,在这里我又引导同学们从焦点个数对两圆位置关系进行分类。
为了让同学们理解圆心之间的距离在五中位置关系中和两圆半径之间有怎样的数量关系我在这里设计了五种动画课件,教师演示让同学们进行归纳。
4巩固新知。
为了巩固以上知识,我在这里设计了三个简单的练习题,只是简单的应用五种位置关系中圆心和半径之间的数量关系。
为了提高同学的能力,只是简单应用还不够,于是我又设计了例题。因为例题有难度所以需要师生共同完成。
5综合拓展。
为了巩固以上学习的内容我在这里设计一个练习题,希望同学们能够独立完成。
为了提高同学们学习数学的兴趣我在这里设计了一个环节,争当小小设计师。这一环节既能提高同学们学习数学的兴趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。
6布置作业。
最后一个环节是布置作业,我的说课到此就结束了。
将本文的word文档下载到电脑,方便收藏和打印。
真分数和假分数人教版五年级教案设计(通用21篇)篇二十一
答:这六个分数可以分成两类,一类是真分数,有15和23,其余的是假分数。
问:很好!那大家看看,真分数应该应画在哪个区间内,假分数呢?讲出你的理由来!
答:两个真分数应该在0到1之间,因为真分数小于1。而假分数应该在1的右边,因为假分数大于1。
问:再仔细观察四个假分数,还有什么特别的吗?
答1:66就是整数1,就画在数轴1的那个点上。答2:54化成带分数是,和都应该在1到2那个区间之中。答3:52是,应该在2到3的区间之中。
总结:看来我们在用直线上的点表示数时,应该先对要表示的数按照所处区间进行分类,做到心中有数,再进行操作。(请学生上台把六个点表示出来)问:你认为哪些数比较容易表示出来?说说你的理由!
答1;我最先表示的就是66,因为66就是1。答2:52也好表示,在2到3这一段看作单位“1”,平均分成两份,从左往右数一份是就是12,加上前面的2就是52。
答3:我把1到2这一段平均分成二份,取一份,那个点就是,再把这一段平均分成四份,从1往右数一份的那个点就是54。答4:我认为54和这两个分数可以进行一次操作,把1到2那段平均分成4份,因为是在1的后面,所以54只要1后数一份就可以了,而可以这样考虑,把1到2这段里已经分好的四格再平均分成两份,一份就是其中的两格,在1后面再取这样的两小格就是。
问:很好,那对于15和23这两个分数,有什么困难吗?
答1:分母5和3不是倍数关系,我们只能把0到1这一段平均分成15份,这样分比较麻烦。
答2:我认为5和3这两个数字并不大,进行两次操作也可以,15就是把0到1这一段平均分成5份,从0往右数过一份就可以了。而23就是把0到1平均分成3份,从左起数两份就是了。
总结:的确,当几个数在同一区间时,如果几个数的分母是倍数关系时,像54和,我们就可以把1到2平均分成4份,但如果几个分数的分母不是倍数关系,我们分得的份数既可以是两分母的最小公倍数,也可以进行两次操作来表示分数。