教学计划需要合理安排教学内容和教学方法,以激发学生的学习兴趣和主动性。希望这些范文能够成为教师们制定教学计划时的良好参考,促进教学质量的提升。
平方差公式教学设计理念范文(20篇)篇一
《平方差公式》是一节公式定理课,是各位老师非常熟悉的一个课题,对大家更熟悉,我深深感到一种压力。但是,无论如何,“新”、“实”是我追求的目标。为此,我作了如下努力:
1、把数学问题“蕴藏”在游戏中。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
2、充分重视“自主、合作、探究”的教学方式的运用。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
3、自置悬念,享受成功。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
4、切实落在实效上。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
5、值得注意的是:
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
平方差公式教学设计理念范文(20篇)篇二
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习。
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
2、运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教学设计理念范文(20篇)篇三
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
平方差公式教学设计理念范文(20篇)篇四
一、教学目标:
1、使学生理解和掌握平方差公式,并会用公式进行计算;
2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
二、重点、难点:
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
三、教学方法。
以教师的精讲、引导为主,辅以引导发现、合作交流。
四、教学过程。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
七、板书设计:
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式教学设计理念范文(20篇)篇五
本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。
让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。
本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。
(一)知识与技能。
2.掌握提公因式法、平方差公式分解因式的综合应用。
(二)过程与方法。
1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。
3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。
4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。
(三)情感与态度。
1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。
平方差公式教学设计理念范文(20篇)篇六
在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点。
难点。
一、复习导入。
1.回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?
(1);(2).
师生共同想办法,想到能否把数转化成较整的数?
变形成:,
再试试把它当成多项式乘法来算算,有什么发现?
继续用你发现的方法算算,,,成功了吗?
我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解。
探究新知。
1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?
讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?
3.从上面的计算中你有什么发现呢?
引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。
下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)。
(1);(2);(3);
(4);(5);(6).
学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。
三、典例剖析。
师生共同解答,教师板书。初学运用时要写清楚步骤。
学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。
例3.计算:
学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。
四、课堂练习。
1.下面各式的计算对不对?如果不对,应怎样改正?
(1);
(1);(2);
(3);(4).
3.计算:
(1);(2);
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结。
师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业。
p50第1、6题。
平方差公式教学设计理念范文(20篇)篇七
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
以教师的精讲、引导为主,辅以引导发现、合作交流。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式教学设计理念范文(20篇)篇八
2.经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现方法,平方差公式第一课时教学反思。
重点:公式的理解与正确运用(考点:此公式很关键,一定要搞清楚特征,在以后的学习中还继续应用)。
难点:公式的理解与正确运用。
教法:自主探究和合作交流。
(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
=x2-22=12-(2y)2=x2-(3y)2。
学生分组讨论,交流,小组长回答问题。
师生共同总结归纳:
即两数和与两数差的积,等于它们的平方差。
(1)一组完全相同的项;
(2)一组互为相反数的项。
2.例题。
(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
3.公式应用。
(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
两个学生板演,其余学生在练习本上自己独立完成。
老师巡视,辅导学困生。
1.计算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
师生共同分析:此题特征,两次利用平方差公式,教学反思《平方差公式第一课时教学反思》。
学生在练习本上独立完成,同桌互相检查。
2.(ab)(-ab)=?能用平方差公式吗?它的a和b分别是什么?
学生分组讨论交流,独立完成运算。
1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
2、运用公式要注意的.问题:
(2)公式中的a、b可以代表什么?
一、检测导入。
二、例题展示。
三、拓展延伸。
四、达标堂测。
五、归纳小结。
即两数和与两数差的积,等于它们的平方差。
六、布置作业。
p21:习题1.91、2。
平方差公式教学设计理念范文(20篇)篇九
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
平方差公式教学设计理念范文(20篇)篇十
平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。
问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。
在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。
拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。
最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。
本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。
平方差公式教学设计理念范文(20篇)篇十一
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;。
3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律.
学习重难点:
难点:探索平方差公式,并用几何图形解释公式.
学习过程:
一、自主探索。
1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.
3、你能用自己的语言叙述你的发现吗?
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二、试一试。
平方差公式教学设计理念范文(20篇)篇十二
1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。
2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。
提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。
平方差公式教学设计理念范文(20篇)篇十三
上周我们学习了“乘法公式”,乘法公式在简化多项式乘法运算、因式分解及以后的数学学习中有着广泛的应用。根据课标的规定主要学习两个最基本的乘法公式,留出更多的时间和空间给学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,掌握公式的应用。
通过一周的学习,学生基本上掌握了公式的形式,并能运用公式解答简单的乘法运算,化简多项式乘法。但是,对于形式较复杂的,3、4学生就辨认不出运用哪个公式,或者把公式用混,特别是符号问题。所以,要多训练,多强化,在作题中掌握技巧,掌握公式的特点。
平方差公式教学设计理念范文(20篇)篇十四
会推导公式(a+b)(a-b)=a2-b2。
通过教学我对本节课的反思如下:
1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。
不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。
2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果.我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。
3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。
4、学生错误主要是:
(1)判断不出哪些项是公式中的a,哪些项是公式中的b;
(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。
总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。
平方差公式教学设计理念范文(20篇)篇十五
平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。
如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。
在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。
我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。最后再进行小结,反馈。
平方差公式教学设计理念范文(20篇)篇十六
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,首先是一个智力抢答,学生通过抢答初步感知平方差公式,接下来,采用小组合作学习的方式,利用“四问”让学生进行试验操作,学生选择的字母有很多种,让它们都有其共性。由此,学生在探索中验证自己的猜想,同时也感受和认识知识的发生和发展的过程,得出(a+b)(a-b)=a2-b2.经过不断的尝试小组合作学习方式的教学,我发现也真正体会到,只要我们给学生创造一个自由活动的空间,学生便会还给我们一个意外的惊喜。
把探究的机会留给学生,让学生在动脑思考中构建知识,真正成为教学活动的主体。使他们在活动中进行规律的总结,并且通过交流练习、应用,深化了对规律的理解。学生对知识的掌握往往通过练习来达到目的。新授后要有针对性强的有效训练,让学生对所学知识建立初步的表象,以达到对知识的理解、掌握及应用,实现从感性认识到理性认识的升华。在此设计了三个层次的有效训练,让学生体会平方差公式的特点:第一层次是直接运用公式,第二层次是将式子进行适当变形后应用公式,第三个层次是平方差公式的灵活应用。通过做题学生归纳出平方差公式的运用技巧。
以四人小组为单位,各小组出两道具有平方差公式的结构特征的题目,看谁出得有水平。学生每人都设计了题目,任意叫了四位学生在黑板上写,经评价结果都对了。这种方法,不仅令人耳目一新,而且把学生引入不协调——探究——发现——解决问题的一个学习过程,使学生获得思维之趣,参与之乐,成功之悦。
本节课在采用小组学习之后,为了让学生的巩固有效果,采用了学生上台讲解、作业实物投影的方式来进行,多种方式的选择,让学生暴露出自己的问题,然后通过生生互动、师生互动解决问题,实现问题及时处理,学习效果不错。
1、节奏的把握上。
这一节我觉得不是很顺,尤其在从几何角度解释平方差公式、例2⑵的其他计算方法等问题上,花了不少时间,节奏把握的不是很好。
2、充分发挥学生的主体地位上。
这节课上,我觉得学生的积极性不很高,回答问题没有激情,说明我背学生还不够,自己想象的比现实的好。
平方差公式教学设计理念范文(20篇)篇十七
1、进一步提高分析,解决问题的能力。
2、学会条件整理,明晰解题思路。
3、理解设间接未知数的意义。
1、学会用列表格或画图法分析题目,理顺关系,使得各种数量关系一目了然,具有直观易懂的优点,避免了因数据多,关系复杂而混淆不清。
2、当直接设未知数时难于列出方程或找到相关的等量关系,我们可采取用间接设未知数的办法。
问题设疑:从a到长青化工厂,铁路走多少公里?公路走多少公里?
从长青化工厂到b,铁路走多少公里?公路走多少公里?
铁路每吨千米运价是多少?公路每吨千米运价是多少?
两次运输总支出为多少元?
分析:销售款与产品数量有关,原料费与原料数量有关,设产品重吨,原料重吨,根据题中数量关系填定下表:
产品吨。
原料吨。
合计。
公路运费(元)。
铁路运费(元)。
价值(元)。
题目所求数值是,为此需先解出与。
由上表,列方程组。
解这个方程组,得。
因此,这批产品的销售款比原料费与运输费的和多元。
1七年级某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,若从挖土人员中抽出6人去运土,则两者人数相等,原来有运土________人,挖土_______人。
2、足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,一个队打11场,负3场,共得16分,那么这个队胜了______场。
当堂检测题。
1、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有_______个,排球有______个,足球有_______个。
2、已知梯形的面积是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,则梯形的上、下底分别是____________。
3、小兵最近购买了两种三年期债券5000元,甲种年利率为5.8%,乙种年利率为6%,三年后共可得到利息888元,则他购甲种债券________元,乙种债券_______元。
4、甲对乙风趣地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。”则甲、乙两人现在的岁数分别是_______。
5、某商店为了处理积压商品,实行亏本销售,已知购进的甲、乙商品原价共为880元,甲种商品按原价打8折,乙种商品按原价打七五折,结果两种商品共亏196元,则甲、乙商品的原价分别为()。
a、400元,480元b、480元,400元。
c、360元,300元d、300元,360元。
平方差公式教学设计理念范文(20篇)篇十八
学习方法:归纳、概括、总结。
创设问题情境,引入新课。
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1、请看乘法公式。
(a+b)(a-b)=a2-b2(1)。
左边是整式乘法,右边是一个多项式,把这个等式反过来就是。
a2-b2=(a+b)(a-b)(2)。
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)。
如x2-16。
=(x)2-42。
=(x+4)(x-4)。
9m2-4n2。
=(3m)2-(2n)2。
=(3m+2n)(3m-2n)。
例1、把下列各式分解因式:
例2、把下列各式分解因式:。
(1)9(m+n)2-(m-n)2;(2)2x3-8x.
补充例题:判断下列分解因式是否正确。
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)(a2-1)。
1、教科书习题。
2、分解因式:x4-16x3-4x4x2-(y-z)2。
3、若x2-y2=30,x-y=-5求x+y。
平方差公式教学设计理念范文(20篇)篇十九
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的。两个学生进行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习。
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
2、运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
2、计算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)。
平方差公式教学设计理念范文(20篇)篇二十
平方差公式本节课的重点是要学生明白平方差公式及其推导(含代数验证和几何验证),并能应用平方差公式简化运算,其中关键是要学生明确平方差公式的结构特征,准确找到a、b。为了让学生对平方差公式有个全面的认识和了解。先让学生计算符合平方差公式的两位数乘法,进而将数转化为字母,从代数的角度,利用多项式乘多项式的知识,推导出平方差公式,接着从几何角度让学生加以解释说明。在此基础上,通过分析公式的结构特征,加深对公式的理解。之后,设计了一个“寻找a、b”的环节,通过这个练习进行难点突破。引导学生反思练习过程,得出“谁是a,谁是b,并不以先后为准,而是以符号为准”这一结论。紧接着给出两组例题,考察学生对公式的应用。最后通过一组判断题和补充练习,拓展学生的.思维水平。
为了给学生渗透数形结合的思想,要从代数、几何两个角度证明平方差公式,但是从哪个角度入手,有利于知识的衔接,便于学生理解。最终决定给让学生猜想结论,再用代数方法加以证明,后给出几何解释,符合知识的发生过程。
对于课本中的公式文字说明是“两数和与这两数差的积”的理解:公式中“a、b不仅表示一个数或字母,还可以表示代数式”。但这里说的是“两数”,原因是所有的规律最初都是在具体的数字中发现的,然后才推广到字母。所以这里说的数不再是具体的数,而是代表一个整体;公式中说的“两数和与两数差的积”,从这个角度说,这两项应是完全相同的,差别只在于运算符号上。但由于我们之前介绍过“代数和”,(a+b)(a-b)也可以理解为(a+b)[a(-b)],就像许多教参上说的,是相同项与互为相反数的项,这样就与课本定义发生矛盾。为了避免这个问题,我在介绍公式结构特征时,只说“有一项完全相同,另一项只有符号不同”,学生可以自己去理解。