教学计划是教师在教学过程中根据学生的学习需要和教学要求所制定的一项有关教学内容、教学目标和教学方法的计划。接下来,让我们一起来欣赏一些经典的教学计划范文,探索教育教学的新思路。
重叠问题教学设计(通用17篇)篇一
一、教材分析:。
《重叠问题》是青岛版小学数学一年级上册74——75页智慧广场的内容。本节课是学生在已经认识了10以内的数、掌握了数的顺序、能正确读写、会比较大小,并且熟练掌握10以内加减法的基础上进行教学的。
本节课的设计目的是从一年级开始向学生渗透画直观图的方法,引导学生从低年级开始初步养成解决问题的策略,为后续学习打下基础,促进学生养成善于思考的好习惯,提高数学素养,激发学生对数学学习的欲望和兴趣,体现数学的价值。
二、教学目标:。
结合教材特点和学生已有的认知结构、心理特征,制定如下教学目标:
1.结合具体情境,学习借助直观图解决简单的重叠问题。
2.经历独立思考、合作探究的过程,提高思维能力,促进思维发展,形成运用几何直观的方法解决问题的策略,增长学生的聪明才智,发展学生的智力。
3.通过活动激发学生学习数学的兴趣和欲望,体验成功的乐趣,产生学好数学的自信心。
三、教学重难点。
本节课的教学重点是:理解简单的重叠问题的意义及解决问题的计算方。教学难点是:理解前面的数量+中间部分+后面数量=总数。
数了两次的部分是重复的部分,要从总数中去掉。
四、教学模式。
本节课采用合作探究教学模式。主要有:创设教学情境、找出有价值的数学信息、提出有效的数学问题并解决、巩固练习、总结反思四大环节。其中提出问题和解决问题是核心环节,主要是通过学生自主、合作、探索,建立数学模型。这样的教学模式,强调学生的自主探究与合作的意识,在参与数学活动的过程中去感知和体验,体现“以人为本”的教学理念。
五、说教学设计:
我以激发学生的学习兴趣为目的,让孩子在快乐中学习,在学习中感受数学的乐趣,确定本节课的教学设计如下:
一、创设情境,导入新知。
二、小组合作,探究新知。
三、自主练习,巩固新知。
四、总结反思,深化认知。
一、创设情境导入新知。
多媒体出示信息图,让学生说一说观察到了哪些数学信息?
根据信息,引导学生提出数学问题:
从前面数花雁排第6,从后面数排第3,一共有多少只大雁呢?
【设计意图】通过创设生动的情景,让学生更容易理解和接受直观、具体的感性材料,调动起学生自主探索解决问题的热情,为学生理解问题奠定基础。
二、小组合作,探究新知。
这一行大雁一共有多少只?
1.猜想:请你猜一猜,这行大雁一共有多少只?
让学生说说自己的想法,可能会出现8只或9只这两种不同的答案。
到底一共有8只大雁还是9只呢?
2.验证:
我们用什么方法验证呢?
引导学生说出摆一摆、画一画、数一数、算一算等验证方法。
下面我们一起先用摆一摆的方法来验证一下到底是几只。
摆一摆:
让学生自己动手摆一摆学具:
(1)引导学生用圆片代替大雁,用三角形代替花雁,边读题,边摆一摆,同桌可以相互讨论交流,教师巡视指导该怎样操作。
(2)找两名同学到展台上摆一摆,并说一说为什么这样摆?
(3)课件演示摆一摆。
“从前面数,它排在第6”,花雁前面摆几只?我们一起来数一数。
“从后面数,它排在第3”,花雁后面摆几只?
数一数,这行大雁有几只?
(4)请同学们再动手摆一摆。
画一画:
除了摆一摆,我们还可以画一画进行验证:
下面用圆片代替大雁,三角代替花雁画一画,看看这一行大雁是多少只?小组内可以讨论交流,教师巡视指导画法。
学生汇报的同时教师板书下来。
回想一下我们是怎样画的?课件演示画一画的方法。
【设计意图】这一验证过程充分体现了新课标要求第一学段的小学生“经历从实际物体中抽象出简单几何体和平面图形,了解一些简单几何体和常见的平面图形的要求”同时在摆一摆画一画的过程中可以使小学生在头脑中产生重叠的概念算一算:
引导学生根据画出的直观图列出算式解决问题。
穿花衣服的大雁,从前面数排在第6,从后面数排在第3。数了两次,
所以可以这样计算:6+3-1=8(只)。
从图上看穿花衣服的大雁前面有5只,后面有2只,
所以可以这样计算:5+1+2=8(只)。
最后让学生说一说这两种方法,你喜欢哪一种?
强化学生对算法的理解。
【设计意图】通过学生的猜一猜,摆一摆,画一画,数一数,算一算等活动,使学生亲身经历了猜想-----自主探究——合作交流——验证的过程,让学生在活动中找到了解决问题的方法。
三、自主练习,巩固新知。
练习设计分为三个层次:
第一层次:基础题。
第二层次:综合题。
第三层次:拓展题。
基础题的设计面向全体学生,使每个学生都能巩固基本的方法和技能。综合题关注差异,使不同程度的学生有不同的发展。
拓展题关注发展,使不同层次的学生得到不同程度的发展。
四、总结反思,深化认知。
我们这节课解决的问题叫做“重叠问题”。(板书课题)。
1.让学生读一读课题,说一说对“重叠”的理解。
2.我们用什么方法来解决的“重叠问题”呢?
画图是帮助我们解决问题的一种很好的方法。
以后在生活中遇到这样的问题,就可以用这个方法来解决。
【设计意图】概念的形成不是一次完成的,要经过多次的比较、分析与综合。通过各种手段,引导学生总结概念,培养学生归纳总结的能力,加深学生对于概念的理解。
六、板书设计。
这是我的板书设计,将本节课的主要内容清楚明了的表现出来,重点突出,能帮助学生对所学知识进一步理解和掌握。
我的说课到此结束,谢谢大家!
重叠问题教学设计(通用17篇)篇二
数学广角——优化(沏茶问题)。
主备人。
赵越。
课型。
新授。
时间。
2016.11.11。
教学目标。
1.学生通过简单的实例,初步体会合理安排时间在解决实际问题中的应用,认识解决问题策略的多样性,形成寻找解决问题最优方案的意识。
2.通过自主探索、合作交流,让学生经历解决问题的过程,初步培养学生的应用意识和解决实际问题的能力。
3.让学生感受到合理安排时间的重要性,体会数学在日常生活中的广泛应用。
重点。
使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的良好意识和能力。
难点。
引导学生从优化的角度在解决问题的多种方案中寻找最优方案。
内容。
环节。
学习流程。
学生活动。
一、联系实际,谈话导入。
二、创设情境。
三、
自主学习,交流展示。
四、知识应用,扩展提升。
五、当堂达标。
六、畅谈收获,寄语。
总结。
老师每天做家务要用20分钟,听音乐10分钟,做完这两件事情需要多少分钟?
在生活中如果我们能够合理安排,不仅能节省时间,还能大大提高我们做事的效率。那今天我们就用同样的方法来学习《沏茶问题》。
1.出示数学书104页例1的情境图。
2.出示沏茶的工序。
怎样才能最快让客人喝上茶呢?
1.出示学习要求。
(1)独立思考,设计方案,完成学习单的内容。
(2)小组交流讨论自己的设计思路。
(3)选择最优方案摆在黑板上,准备展示。
2.小组展示。
3.师生共同总结合理安排时间的窍门。
4.讲解流程图。
5.总结。
1.学生独自完成练习。
2.小对子互相说一说。
3.集体订正。
独立完成,集体订正,统计结果。
通过这节课的学习,你有什么收获吗?请把你的收获分享给大家!
学生自由回答。
引出“同时”
学生自由回答。
引出沏茶的工序。
学生独立用工序图摆一摆,说一说,并用自己喜欢的方式表示出来。
小组交流自己的设计思路,选择即合理又省时的方案进行预展。
总结合理安排时间的窍门。
学生说自己的想法。
学生自由发言。
学生练习。
用“先……再……然后……最后……”表述。
学生畅谈收获。
板
书
设
计
顺序。
同时。
时间。
教
学
反
思
重叠问题教学设计(通用17篇)篇三
国标本数学四年级下册第50~51页。
1、从学生的生活实际出发创设情境,了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。
2、学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。
3、学生在活动中增强探索数学规律的兴趣,积累积极数学学习情感。
学会有序地思考,掌握求两类事物搭配的方法。
探究两类事物搭配的规律并灵活运用知识解决问题。
一、联系生活情境,导入新课。
2、所以,后人为了纪念他,每年都举办“华罗庚数学金杯赛”,可参赛的对象只有六、七年级的同学。为了激发大家学习数学的热情,三(1)班开展了争创“数学小能手”的比赛,我们来看看都有哪些同学获奖了。(显示五位同学)男女生情况怎样?(3女2男)。
3、设疑:学校五月份将评选校级“数学小能手”,假如在这5位同学中选1名男生和1名女生参赛,你准备怎样选?(学生说一说)。
4、刚刚你们说的每一种选法其实都是一种搭配,除了他们说的这些,还有没有其它搭配的方法呢?今天这节课我们就来探索事物搭配的规律。(板书:搭配的规律)。
设计意图:在设计这节课时,我把教学内容重新组织了一下。我以最近的华杯赛谈起,充分利用多媒体创设情景,以评选“数学小能手”为线索,使学生感受到数学就在身边,学习是一种乐趣,从而增强学生学好数学的信心,从中尝试到成功的喜悦。
二、合作探究,初步感知搭配,体会有序思想。
1、分类:既然要选择1男1女参赛,而图中男女混合在一起,眼花缭乱不易分辩,看来有必要先把他们……(演示分类),这样男女生就一目了然了。
2、合作探究:那下面我们就来动手找一找,看看有几种搭配方法?同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。
3、全班交流:一组汇报,其余同学一边观察,一边思考对他们的搭配有什么见解?(请搭配方法不同的同学上台展示:无序、有序)。
4、比较方法:通过刚才的观察和思考,你更喜欢哪一组同学的搭配方法?他们在搭配时注意到了什么?(有顺序的搭配)怎样的顺序呢?(先选女生,分别与男生搭配;先选男生,分别与女生搭配)。
师:是呀,正是因为他们在搭配时注意到了一定的顺序,所以会把这六种搭配方法毫无遗漏的记录下来。而且这样搭配更有条理。在数学上,这样思考的方法叫有序思考。(板书:有序)那么像这样有序地搭配、有序地思考有什么好处呢?(不重复不遗漏)。
5、小结:看来先固定一类人的方法确实不错。老师也想来尝试一下。把3位女生和2位男生进行搭配,可以先选女生有序搭配(演示);也可以先选男生有序搭配(演示)。
6、你们能像刚才这样,先选定一类人,把男生和女生进行有序地搭配吗?请同学们按新的想法进行有序地搭配。
设计意图:在教学过程中,把学习的主动权交给学生,给学生比较充裕的时间去自由观察、思考、选择,用说一说、想一想、写一写等形式对有几种搭配方法展开讨论和交流,并在相互启发和独立思考的过程中,得出共有六种搭配方法,通过不同搭配方法的比较,感悟有序搭配的好处,体验成功的乐趣,培养与他人的合作意识及主动探究精神。在方法、练习上,放手让学生自由选择自己喜欢的方法,真正体现了学生是学习活动的主人。
三、创新表示,体会符号思想。
1、讨论:教师发现你们刚才在摆学具和记录的过程中,花费的时间比较多,而且在解决实际问题时,并不是都会有学具给你摆,为了节约时间,有没有更好的方法呢?同桌可以商量商量。
2、尝试:请大家用自己想到的、更加方便的方法在作业本上有序地表示出这些搭配方法吧。(学生表示,展台展示,学生说说每种符号各表示什么)。
3、比较:这么多的方法,你更喜欢哪一种呢?为什么?(简洁方便)看来,用简单的图形、字母或数字来表示实物的方法更简单明了呀。
4、归纳:老师是用简单图形表示的。用三角形表示女生,用长方形表示男生。把3位女生和2位男生搭配,可以先选女生有序搭配,也可以先选男生有序搭配。
设计意图:教师紧紧利用学生的动手制作成果,创设再次动手操作情境,体验符号在记录中的作用。由于是自己劳动所得,学生兴趣盎然,一个个优秀的设计方案让你耳目一新、赞不绝口。整个过程,充分体现了学生的主体作用,使学生真正成为学习活动的发现者、研究者、探索者。品尝到了成功的喜悦,激发学习的动力源泉。最后我想用三句话来表达心中的`感悟:那就是,当学生有兴趣时,他们学得最好;当学生自由参与探索与创新时,他们学得最好;当学生有更高的自我期待时,他们学得最好。
四、尝试运用规律,解决生活中的问题。
(3)小结:有时,当搭配的结果很多时,要注意选择最合适的搭配方案。
设计意图:借助真实的生活情境,请学生帮助设计行走路线,有效地激发了学生参与的热情。让学生通过表述具体路线有困难,自然而然想到用符号帮忙。既巩固了有序思考的方法,又渗透符号在数学中的作用,会运用数学方法解决问题。
2、通过变化,体会总结搭配规律。
(2)师:如果有10种搭配方法,你认为笔和书签可以各买多少?(学生交流)。
小结:通过刚才的这些变化,你发现搭配的方法数与什么有关?(与笔和书签的数量有关)那笔和书签的数量之间有怎样的关系呢?(笔的数量与书签数量的乘积就是搭配的方法数)。
(3)揭示课题:一种事物的数量与另一种事物的数量相乘所得的积就是两种事物搭配的方法数,这就是我们今天要研究的搭配中的规律。
设计意图:从实物图形到数学建模来解决问题,通过变式对比练习,强化学生对搭配规律的理解。从中找到事物中蕴含的数量关系,并运用数学方法来解决。
五、全课小结。
通过学习,你有什么收获与体会呢?(想问题要有序思考、乘积即搭配方法)。
六、联系生活运用。
1、思考一下在我们实际生活中,你有没有遇到过有关搭配的问题?
2、生活中搭配的现象可真多,饮食的搭配可以让我们吃的更好、更有营养;服饰的搭配可以让我们显得更美、更有精神。那下面我们就一起来体验一下服饰的搭配,做一次小小服装设计师。(演示书本51页第2题)。
设计意图:服饰的搭配是生活中常见问题,通过对上装与裙子、上装与裤子的搭配方法的探究,让学生感觉数学就在身边,再运用规律来解决问题,真切体会到“数学源于生活,用于生活”。激发学生学习数学的热情。
七、拓展延伸。
1、谈话:搭配的规律,我国古人很早就开始运用了,《田忌赛马》的故事不陌生吧?一开始他们是怎么比的呢?(齐威王和田忌用上等马—上等马,中等马—中等马,下等马—下等马)。
2、我们今天也学习了搭配的规律,如果任选齐威王的一匹马和田忌的马搭配比赛,共有多少种不同的搭配方法呢?哪9种?(学生交流——口述回答——演示)。
3、田忌连输了三场,觉得很郁闷,垂头丧气地准备离开赛马场,可是后来在一位高人的指导下,又进行了一次比赛,却赢了齐威王,你知道他运用了什么方法吗?把你想到的方法用连线快速地记录下来。(学生动手操作记录)。
4、(学生汇报方法,多媒体演示)。揭晓:这位高人便是我国古代著名的军事家—孙膑。
5、我们发现,齐威王在第二次比赛是太自信、太大意了,他在第一场赛马后没发现问题,假如他看出了田忌的想法,那么在第二次比赛中途还有没有取胜的方法?(讨论方法,学生口述)。
设计意图:巧妙的利用《田忌赛马》的故事,分层进行练习。既激发了学生学习数学的兴趣,引起学生参与思考,参与研究的热情,又为搭配规律的运用做了深入细致的铺垫。同时渗透了数学思维方法的训练和思想教育。
重叠问题教学设计(通用17篇)篇四
相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。
设计思想:
(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。
(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。
理念:
(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。
(1)知识与技能:
了解相遇问题的应用题的基本结构,掌握解题方法。
(2)过程与方法:
经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。
(3)情感态度与价值观:
a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。
b:培养学生在生活中提出数学问题的意识。
重点:了解相遇问题的应用题的基本结构,掌握解题方法。
难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。
(一)创设情境
1、复习旧知,引发联想
画面演示,画外音叙述:
这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?
这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?
请学生谈谈对这两道题的想法。
2、学生表演,理解概念
刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。
屏幕上依次闪动出现:相对、同时、相遇、相距
(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。
(2)老师叙述,学生表演。
两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。
提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。
(二)尝试探索
1、出示例题
2、提出问题
看到例题,你会想到什么问题?
师生对问题进行筛选,重点解决下面几个问题:
(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?
(2)4分钟的时候会出现什么情况?
(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)
3、列式讨论
(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。
主要有两种思路:
第一种:65×4+70×4
第二种:(65+70)×4
4、认识速度和
5、质疑
“对这道题还有什么不同的想法或问题吗”
(三)巩固发展
1、基本练习
2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。
3、游戏
再请两位同学表演,并提问两人相对而行可能出现什么情况?
(1)两人相遇;
(2)行走一段未相遇;
(3)相遇后继续行走。
给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。
教师一边叙述,一边出示5分钟时间的牌子。
重叠问题教学设计(通用17篇)篇五
1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的关系。
2、让学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3、让学生会用自己的语言表达解决问题的大致过程和结果。
4、让学生在活动中获得积极的体验,感受数学与生活的联系。
经历转化过程,初步学会用转化的方法来解决简单的实际问题。
让学生学会用转化的方法来解决简单的实际问题,会用自己的语言表达解决问题的大致过程和结果。
教具:课件、小棒若干根。
学具:每人小棒若干根,同桌两人一张练习纸、一支水彩笔。
设计理念:遵循《数学课程标准》的要求,从学生的认知水平和已有的知识经验出发,给学生提供愉快的学习环境,让学生通过学生动手操作、自主探索、思考交流,积极参与数学活动,在生动的教学情境中自主收集信息,提出问题,解决问题。教学中注重学生的情感体验,关注学生的学习过程,让学生在活动中获得积极的体验,感受数学与生活的联系。
(一)初步感知。
1、引入:小朋友们平时喜欢用小棒摆东西吗?会用小棒摆什么呢?然后教师展示自己摆的小花伞,得出摆一把小花伞用4根小棒。
2、动手:学生动手摆小花伞,指名一位学生在黑板上摆。
3、交流:(1)说说你摆了几把小花伞,用了几根小棒?你是怎么知道的?
(2)观察黑板上:×××用的小棒根数和老师用的小棒根数有什么关系呢?学生说出的关系可能有求和、比多少、还有倍数关系。如果没有倍数关系,可以引导学生:除了小朋友们说的求和、比多少,如果换一种说法,说说我们用的小棒根数的倍数关系,你会吗?得出:×××用的小棒根数是老师的3倍。
(3)你又是怎么知道×××用的小棒根数是老师的3倍的呢?有些学生可能是直接通过观察,有些学生还可能会将求12是4的几倍转化为12里面有几个4,并用除法计算。
(4)12÷4=3表示什么意思?单位怎么写?得出:12是4的3倍,说明倍表示的是两个数之间关系,不是单位名称,所以3后面什么也不用写。
(5)让学生说说自己用的小棒根数是老师的几倍。
4、引出课题:用倍的知识去解决问题。
(二)进一步感知。
1、引入:森林里正在举行动物运动会,一起去看看。
2、出示:跳远比。
松鼠:
袋鼠:
猜一猜:袋鼠跳的长度是松鼠的()倍。
3、出示数据,电脑验证。
1、引导学生收集信息并自主提出问题。
出示:爬行比赛。
蜗牛24只毛毛虫6只;乌龟4只。
学生提的问题能口答的直接口答。(如求和的或者比多少的)。
从学生的回答中摘录:“蜗牛的只数是毛毛虫的几倍?”或“蜗牛的只数是乌龟的几倍?”
3、比较两个问题,说说你有什么发现?
引入:闯关比赛。
1、第一关:估一估。
估一估,左边公鸡的只数是右边的几倍?
图片出示:左边20只公鸡右边5只。
2、第二关:“阳光伙伴”体育运动。
出示图(略)。
要求列式表示参加各项活动的人数之间有倍数关系。
3、第三关:开启智慧大门。
出示智慧大门图。
1、提示学生:智慧大门上方有12盏灯,小朋友必须开启一些灯,而且开启的盏数与关着的有倍数关系。如开启——10盏,关着——2盏。10是2的5倍。
要求同桌合作用彩色笔涂色,探究不同的涂色方法。
(五)、课堂总结深化主题。
说说这节课你有什么收获?
重叠问题教学设计(通用17篇)篇六
《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标,任妮《重叠问题》教学反思。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:
1、在问题的解决过程中,注重图、算式、文字的有效结合。
本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合,教学反思《任妮《重叠问题》教学反思》。,既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。
2、在了解、尊重学生已有的知识经验的基础上来确定合理的教学目标。
本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示,其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的',学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。
总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!
重叠问题教学设计(通用17篇)篇七
1.通过活动实例,初步渗透集合的思想方法,引导学生学会用韦恩图表示两个集合及它们的交集。
2.培养学生探索能力和会用集合思想解决实际问题的能力。
3.培养学生善于观察、善于思考,养成良好的学习习惯
理解集合图的各部分意义及解决简单问题的计算方法。
一、问题情境,导入新课
2、学生在汇报过程中发现问题(有人重复报名)
3、教师追问:重复是什么意思?哪几人重复了?到底有几人参加比赛(12人)
4、过渡:刚才我们在观察报名单,研究参加比赛总人数时,有同学说15人,有同学说14人,还有同学说12人,看来,问题的关键就在于这份报名单上没有将重复报名的3名同学清楚地表示出来。你们能不能想个更加直观的办法,让我们一目了然就能知道哪些是参加跑步比赛的同学,哪些是参加跳绳比赛的同学,哪些是两项比赛都参加的同学。(出现具体要求)
二、自主探索,对比设计方案
1、小组交流,教师巡视
2、各小组汇报设计方案
第一组:标注记号法
第二组:分类记录
第三组:利用两个交叉的圈表示
4、对比交流,选择最佳方案
(1)出示第二种和第三种方法,看看哪种方法更清楚,更直观,也更简便。
(2)学生发表自己的看法,达成共识(利用两个交叉的圈表示)
(3)过渡:看来,我们在交流中发现,利用这样一幅图表示报名情况,不仅简便,而且还能从中获取这么多的信息,下面我们就一起将方法重新呈现在黑板上。
三、了解韦恩图的各部分意义
1、教师在黑板上演示。
2、思考汇报:
3、进一步巩固理解图中各部分表示的意思。(课件分别出示)
4、教师讲解韦恩图的来历。
四、多种方法列式解决
1、教师引导学生利用韦恩图,想出多种解决方法。
2、学生独立完成,指几名同学将方法写在黑板上。
3、学生汇报各种思路方法。
(1)“4+3+5”教师评价:把不重复的三部分相加求出总人数。
(2)“7-3+8”
(3)“8-3+7”
引导学生发现:这两种方法在思路上有什么相同之处。
(4)“7+8-3”:教师提问:为什么要减3?请结合图示说明。
4、教师小结:同学们,你们真了不起。就这么一个问题,借助直观图示从不同的角度思考,想出了这么多方法来解决。而且通过同学之间的对话交流,弄明白了每一种方法的意思,看到你们收获的一个个学习成果,老师真为你们高兴。那么我们今天解决的这类有重复的问题在数学被称为重叠问题(板书:重叠问题)。
五、拓展应用
1、出示三年一班报名情况(跑步5人,跳绳7人)
2、提问:参加这两项比赛可能有几人?
3、请学生利用点子图分别演示几种情况。
4、猜一猜:最多几人?最少几人?
5、课件出示集合图的几种不同情况。
6、想一想:如何在含有交集的集合图上表示三年一班的全体同学?
7、想一想:三年一班没参加比赛的同学在图中哪一部分表示?
六、总结延伸
重叠问题教学设计(通用17篇)篇八
《数学广角--重叠问题》教材上安排首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的'关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。
在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。
课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。
在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。
任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。
重叠问题教学设计(通用17篇)篇九
1.理解“烙饼问题”数学模型,掌握不同张数“烙饼”最优化方案的基本规律,能解释生活中的相关现象、能进行相关的简单实际应用。
2.通过观察、操作、比较、讨论等数学学习过程,引导学生认识到解决问题策略的多样性,渗透解决问题最优方案的意识。发展思维的灵活性。
3.通过探究活动,让学生体验探索和合作的乐趣,充分感受数学与生活的密切联系,培养学生合理安排时间的良好习惯。
教学重点:能利用探究“烙饼问题”的规律解决简单的实际问题。
教学难点:在探索“烙饼问题”的过程中,形成解决较复杂问题的数学研究方法,体会优化的数学思想。
课件、记录表、饼模型。
准备课前互动:有一个字总是被人们念错,猜猜是哪个字?(错)同一天出生的两个小孩,长得一模一样,是一个妈妈生的,不是双胞胎,请问咋回事?(三胞胎)
设计意图:舒缓紧张气氛,活跃现场氛围,帮助学生思维“热身”。
一、谈话导入,激发兴趣。
1.出示自家厨房情境,交流吴老师做饭的兴趣爱好。
2.煮一个鸡蛋需要5分钟,煮3个鸡蛋需要多长时间?
3.烙两张饼需要6分钟,烙一张饼需要几分钟?
设计意图:老师进行自我开放,让学生了解生活中的老师,拉进师生距离。从最简单的优化案例谈起,给全体学生思考的时空,为探究课堂中的问题打基础。通过逆向思维问题的直接对比,初步引发冲突,激发学生学习欲望。
二、自主探索,合作交流。
(一)解读信息,理解烙饼规则
1.学生自主阅读,发现关键的数学信息。每次只能烙两张饼,两面都要烙,每面要3分钟。
2.深入解读数学信息。
(1)每次只能烙两张饼是什么意思?
(2)两面都要烙呢?设计意图:发现并提出问题是数学学习的根本。引导学生能把生活中的数学问题抽象成数学问题来解决,这是培养学生应用意识的重要意义之一。
(二)依次探究2张饼、1张饼、4张、6张、8张……张饼的最优烙法
1.研究2张饼的最优烙法。设问:如果要烙2张饼呢?需要几分钟?
(1)想一想,你会怎样烙?所用时间是多少?
(2)指名学生汇报(借助手直观演示),预设出现两种情况。烙两张饼需要6分钟,烙一张饼需要3分钟。可两张饼一起烙,先烙正面需要3分钟,再烙反面,又需要3分钟,共6分钟。
(3)原因分析。预设:锅里面有空位,但是只烙一张饼,只有空着。
2.探索4张饼的烙法。
(1)同桌之间用手当饼,尝试验证。
(2)交流汇报:用老师的饼模型在黑板上演示,得出公认的结果。
3.全班分4组,分别探究烙6张、8张、10张、12张饼的最优方案。
(1)集体研讨。
(2)交流汇报,合情推理,得出结论。当要烙的饼的张数为双数时,最优化方案所用时间是饼的张数乘烙单面的时间。(板书)设计意图:数学教学要切合学生的认知水平、由浅入深循循善诱。这样的设计符合学生认知规律,会感觉到轻松得出结论。同时探索过程中的直观方法、模型思想为后面探究更难的烙3张饼问题打下基础、埋下伏笔。
4.探究3张饼的最优烙法。
(1)猜测烙3张饼所需时间。学生自主尝试、合作交流。
(2)展示烙法,寻求最优方案。
(3)挑选至少两个小组分别汇报,学生借助老师提供的饼模型在黑板演示,同时呈现记录表。预设生成:第一种:12分钟、第二种:9分钟(4)对比发现3张饼的最优烙法。
5.小结:3张饼的最优烙法的原理。设计意图:这一环节是本节课的关键、是突破难点的核心环节。在前面探究较为简单的烙饼张数的基础上,利用已有的认知经验和活动经验,经历了猜想、操作、验证的学习过程,能更好的渗透数学思想方法、积累数学活动经验。
6.探究5张、7张、9张、11张饼的最优烙法。
(1)教师借助板书,引导学生利用前面烙饼的经验推理出烙单数张饼(不含1张)的最优烙法。
(2)学生小结。设计意图:当烙饼的张数是双数时,就2张2张的烙,当烙饼的张数是单数时,可以先2张2张的烙,最后3张按最佳方法烙,这样最节省时间。设计意图:这一环节的设计紧紧围绕教学目标进行拓展,培养学生推理能力,真正做到举一反三,所形成的知识、技能、思想和经验是推动学生后续学习数学最宝贵的财富。
三、练习巩固,提升应用
1.(例题中情境)如果有16张饼,怎样烙最节省时间?需要几分钟?
2.(例题中情境)如果有23张饼,怎样烙最节省时间?需要几分钟?
4.一口锅一次能同时烙3张饼,两面需要各烙3分钟,烙6张饼最少需要多长时间?设计意图:练习的设计由浅入深,层层递进,再次引发学生思考,同时完成巩固和应用。
四、总结延伸,拓展思维
1.谈谈你这节课的收获?
设计意图:帮助学生把一节课所学习的知识更好的同化到已有的认知结构中,同时进行更为深度的思考,为有余力的学生提供更广阔的思考时空。
重叠问题教学设计(通用17篇)篇十
苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:()个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
重叠问题教学设计(通用17篇)篇十一
第一段:引言(约200字)。
近年来,随着我国经济的快速发展和城市化进程的加快,重叠问题已成为一个日益突出的社会问题。重叠问题主要指的是城市中过度开发、用地滥用和公共资源浪费等现象,这些问题给城市发展带来了严重的不良影响。在切实解决重叠问题的过程中,我深感这是一个需要我们共同努力的挑战,并领悟到了一些心得体会。
第二段:重叠问题的影响与原因(约300字)。
重叠问题对城市发展带来了多方面的不利影响。首先,重叠问题导致土地资源被大量浪费,造成城市用地成本过高,阻碍了城市规划的实施。其次,重叠问题使得城市空间布局紊乱,交通拥堵和环境污染等问题日益突出。这些影响的背后,是一系列原因的共同作用。发展过程中的利益驱动、政府规划不到位、市场监管不严等因素都是造成重叠问题的关键原因。
第三段:解决重叠问题的策略和措施(约400字)。
为了解决重叠问题,需要采取多方面的策略和措施。首先,应加强城市规划和管理,避免重叠发生。政府应加强城市规划的科学性和可持续性,合理规划城市的用地、交通、居住和产业布局。其次,应优化土地利用,提高土地利用效率。通过土地收治、绿地建设、改善住房条件等方式,合理利用土地资源,减少重叠问题的发生。最后,应加强市场监管,遏制重叠问题的滋生。严格执行相关法律法规,打击非法占地、房地产开发违规等行为,保护良好的城市形象和生态环境。
第四段:重叠问题的解决需要全社会的参与(约200字)。
解决重叠问题不仅需要政府部门的努力,也需要全社会的广泛参与。社会各界应树立保护环境资源的意识,积极参与公益事业、环保行动,共同推动城市的可持续发展。此外,公众也应加强对城市规划和用地利用的监督,提高自身的环保意识,共同营造良好的城市环境。
第五段:总结(约200字)。
重叠问题是一个复杂而严峻的社会问题,但只要政府和社会各界共同努力,采取科学的策略和措施,这个问题是可以得到解决的。作为每个公民,我们有义务和责任参与到解决重叠问题中来,积极行动起来,为建设美好的城市贡献自己的力量。相信在全社会的共同努力下,我们一定能够创造出更美好、更繁荣的城市。
重叠问题教学设计(通用17篇)篇十二
《重叠问题》是小学三年级下册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,从而掌握利用集合的思想方法来解决简单的实际问题的方法。课程实施后我有如下几点体会:
“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决参加两个课外小组一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有17人,而教师适时指出不是17人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少。而老师此时创设了另一个问题情境,通过报名表让学生发现冲突的矛盾点,再让学生设计图案解决这个问题。从而使学生的思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。
本节课上,我尝试让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,(从收集学生的名单——反馈整理好的名单——圈一圈,站一站——圈语文和数学兴趣组的名单——课件一步步演示集合的形成),让学生在过程中体验集合的思想,在过程中感悟重叠,让学生经历问题解决的`数学化过程,从而获得数学学习经验。接着,创设了让学生自己设计图。学生设计的图各式各样。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维。当学生汇报自己独特的表示方法时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生经历集合图的产生过程并充分感知体验集合图的作用。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。
特别是在解读集合图时,让学生充分理解“参加……的,只参加……的,既参加……又参加……的”的含义。反思今天的教学过程,我觉得我还是比较注重培养学生思维的严谨严密性,本节课上有2次重点解读了韦恩图,第一次是韦恩图的形成初期,第二次是形成了规范的韦恩图后。在解读韦恩图的过程中,我很注重学生表述各个部分的意思。红色圈是表示“参加语文兴趣小组”和蓝色圈使表示“参加数学兴趣小组”,而去掉了都参加的部分后是“只参加语文兴趣小组的人数”,“只参加数学兴趣养和提高。
学生在一种民主、和谐、轻松的学习氛围中通过合作交流以及独立思考后,发现集合里面的重复问题,再在现实生活中解决集合的重复问题。通过解决问题,让学生体会到了“集合”这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的实际问题的重要性。让学生在不知不觉中把数学知识“带”进生活实际,体验到在生活中处处有“数学”,学生的思想也获得了新的发展。
文档为doc格式。
重叠问题教学设计(通用17篇)篇十三
(广西来宾武宣县实验小学韦俏娟)。
教学内容:人教版三年级下册第108页例1,练习二十四第1、2题。
教材分析:
的总人数,从而认识重叠问题,初步体会集合思想。集合是比较系统的、抽象的数学思想方法,限于认识水平,三年级学生学习难度较大。
设计理念:
的数学思维能力。教学活动过程力求朴素、简约、有效。
教学目标:(1)读懂集合图,初步体会集合思想;
(2)会用集合图表示事物,借助集合图理解数量关系;
(3)利用集合的思想方法解决简单的重叠问题;
教学重点:初步体会集合的思想方法,会用集合图表示事物。
教学难点:能正确用集合思想解决简单的重叠问题。
教具准备:课件。
教学过程:
一、活动引入。
课件出示:
三(3)班参加学校跑步比赛的运动员名单:
50米黄灿灿黄莹莹钟杨克陈知桐潘姿宇。
100米黄灿灿黄莹莹钟杨克方芳舜左东艺。
仔细观察上表,你有什么发现吗?(指导学生读统计表,获得以下信息:)。
参加50米的有()人,参加100米的有()人,参加这两项比赛的一共有()人。(为什么是7人而不是10人?由此引入新课)。
二、深入探究。
1.借助“运动员签名”游戏,引导学生用集合图表示以上参赛运动员的组成情况。
(1)出示空白的集合图,让学生说说看,从这个图中你看懂了什么或者想提出什么问题?
(2)请运动员上来签名。
2.在集合图下引导学生求出两项参赛运动员一共有多少人。
5+5-3=7(人)。
3.追问:为什么要减3?
4.学习课本例1.课件出示:
(1)让学生观察下图,问:你看懂了什么?能提出什么问题?
(2)小结:语文小组有(8)人,数学小组有(9)人,两个小组一共有()人。列式:8+9-3=14(人)或5+3+6=14(人)。
(3)用课件帮助理解数量关系:
语文小组的人数+数学小组的人数-重复的人数=两个小组的总人数。
4.归纳并揭示课题:重叠问题。
三、实践应用。
1.下面那些动物生活在陆地上,那些在水里?
2.练习二十四第2题。
3.小明和同学们排成整齐的方块队型做操。
(1)从左边数他是第7个,从右边数他是第8个,每行站了多少人?
(2)从前边数他是第6个,从后边数他第5个,一共站了多少行?
(3)根据以上两个信息,可以解决一个什么问题?(一共有多少人在做操?)。
4.脑筋急转弯:两对父子去参观动物园,他们只买3张票就可以进去了,为什么呢?
四、全课总结。
五、板书设计。
重叠问题教学设计(通用17篇)篇十四
重叠问题是新教材三下中的教学内容,是原先奥数三年级的教学内容。对于三年级学生来说,学习这部分内容,思维力度较强,内容偏难,有一定的挑战性。黄素女老师处理教材独到,教学节奏控制合理,对学生的回答应对自如。学生从猜测到操作建模,到练习拓展,一直处于轻松主动,思维活跃的良好学习状态中,教学效果扎实有效。设计上主要有以下几个亮点:
一、激趣引入,巧伏重叠思想。
老师通过闹经急转弯,让学生想到生活中的重叠问题。通过这样一个小小的活动引入课题,有利于激发学生的学习兴趣。引入环节花时不多,却达到了既激发兴趣,又孕伏新知的效果。
二、合作交流,建立模型。
集合思想的重要表现形式是韦恩图。教师在教学中并未直接教学,而是采用主动探究的形式,让学生带着问题小组合作摆一摆学具。在操作活动中,学生人人动手,个个献计献策,思维的火花在不断地碰撞。学生通过实践操作,自主探究发现,同时在老师的引导下摆出了韦恩图,但教师并未就此罢休,而是利用多媒体课件继续引导学生观察、说说:各区域各代表什么?通过教师的精心设问,学生的合作交流,他们不仅建立起集合思想的数学模型,并清楚地理解了各部分表示的意思,使教学目标真正落到了实处。
三、首尾呼应,拓展延伸。
练习之后,学生对重叠的意义有了进一步的理解。王老师设计的练习,起到首尾呼应的作用,并且把包含与交叉重叠与不重叠等几种不同情况。通过题组,揭示了它们的区别与联系。设计巧妙,考虑周到。
重叠问题教学设计(通用17篇)篇十五
一、课前导入。
同学们,通过昨天和你们的交流,老师发现了一个小秘密,那就是咱们班的同学既聪明又勇敢,这节课老师就要来验证一下了,准备好了吗?不错!同学们都知道,老师不怕谁呀?(大灰狼)就怕谁呀?(小绵羊)。希望今天能看到你们积极活泼可爱一面,将有许许多多的小礼物等着你们哦,好上课,同学们好,请坐。
二、拓展方舟。
前几天呀,老师遇到了一个小问题,你们愿意帮帮我吗?非常感谢,请听题:两位妈妈和两个女儿一同去看电影,可是他们只买了三张票,为什么呢?好,你来说,生1.教师总结可能妈妈带着未出生的小宝宝一起看电影了,生2教师总结也可能是妈妈带着未成年的小朋友来看电影了。生3教师总结:听明白意思了吗?你重复一遍。教师总结:也可以说妈妈又几个身份,?对,2个、哪两个?妈妈女儿。也就是说她的身份重复了,她既是妈妈又是女儿。
三、游戏解决重点难点。
1.刚才同学们帮我解决了难题,老师非常的高兴,想和你们一起做个抢椅子的游戏,喜欢吗?先别着急,请看游戏小规则:1参加抢椅子的'同学围绕椅子转,抢到椅子为胜,直到分出冠军2游戏过程中注意安全3其他同学仔细观察。准备好了吗?好,你来,同学们2个人抢2个椅子能完成游戏吗?恩,人少,那我再多找几个,一不小心叫多了,怎么办?快帮老师想想办法,恩,我们呀可以让他们几个玩猜拳游戏,好,你们4个进行猜拳游戏,胜出者接着参加抢椅子游戏。很可惜,你们三个一起随同老师当小评委吧。
(为他们加油)争夺冠军的时刻到了,最后恭喜这位小朋友,你拿到了这次的冠军,送给你一个小礼物。
2.刚才呀铜须门玩的非常开心,这时老师要来刁难一下你们了,请闭上眼睛想一想,参加抢椅子游戏的有几人?参加猜拳游戏的有几人,一共有多少人参加了游戏?到底是7个还是6个呢?让我们一起来验证下:老师这里有两个呼啦圈,请参加抢椅子游戏的同学站在这边,参加猜拳游戏的同学站在那边,引起矛盾冲突,其中的一个小朋友该怎样站?分成两部分行吗?嗯,两个都有,这主意不错。
3让我们一起来看一下:这个圈子里是,这个圈子里是()重叠的这一部分是(),这一个小半圈里是()这一个小半圈里是()好,为你们鼓掌,你们根据现在的这种情况画个几何图形吗?下面以小组为单位画个几何图形。
4让学生在讲台上展示画的情况。
5教师根据画的情况出示图进行总结。
6一起回顾一下,你们能为这些图形起个名字吗?其实呀,早在很久很久之前,这个人就发明了这些图形就是韦恩图,是表示封闭图形及其关系的图形,便于我们解决问题,我们称之为重叠问题。
7总共有几个人参加了游戏,小组讨论一下有几种计算方法,学生说教师板书。
四、课堂练习。
五、刚才呀同学们都沉醉在这种重叠美中。
是呀,在我们的生活中有许许多多这样的重叠美,数学与我们的生活有着密切的联系,希望同学们能用智慧的眼光去观察生活,去解决生活中的实际问题。
六、结束课堂,好这节课就到这儿,下课。
重叠问题教学设计(通用17篇)篇十六
《数学广角——重叠问题》是人教版三年级新教材数学广角新增加的内容。教材的编排顺序是,首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。
“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。
在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。
小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。
在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。
任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。
重叠问题教学设计(通用17篇)篇十七
一、教学目标:
1.使学生感知集合图的产生,初步体会集合的思想方法,
2.能利用集合的思想方法来解决简单的实际问题,并能用数学语言进行描述。
3.让学生在探究、应用知识中体验数学的价值,感受解决问题策略的多样性,培养学生善于观察、勤于思考的学习习惯。
二、教学重点:
对集合图的理解,并学会用集合的思想方法来解决实际问题。
三、教学难点:
对集合图各部分的理解。
四、教学过程:
(一)、课前谈话:
师:我们三(2)班的同学特别聪明,老师想给大家来脑筋急转弯,你们敢不敢挑战?
(二)、设疑,探索新知。
1、设疑:
三(1)班同学参加课外兴趣小组,参加语文组的有8人,参加数学组的有9人,三(1)班参加语文组和数学组的学生一共有多少人?(17人,并板书算式)。
2、新授例1:
真的是这样吗?老师课前对三(1)班学生参加语文、数学课外兴趣小组情况进行调查,请看统计表。
出示例1、三(1)班参加语文、数学课外兴趣小组学生名单。
(1)看清楚了吗?哪三(1)班参加语文、数学课外兴趣小组的学生到底有几人?(14人)刚才不是17人,现在只有14人了?这是为什么?(因为统计图看出有三个人是重复的,要减去)。
(2)同学们,三(1)班参加语文、数学课外兴趣小组的情况用统计表来表示不是很明显,用图表示就更清楚了。
教师边说大圈图边说意义,我们可以用红圈表示参加语文小组的学生,蓝圈表示参加数学兴趣小组的学生。把3位重复的学生点成红色,再抛出问题,那杨明李芳刘红既参加语文小组又参加数学小组我们该怎么表示呢?(重叠起来)。
(3)弄清图中各部分表示什么?
现在你能说说这幅图中每部分表示什么吗?学生边说教师边指,并区分清参加语文小组学生和只参加语文小组学生,和把参加语文小组分成两部分。谁再来说一说图中表示的意思。同桌也指着练习纸上的图来说一说。
大家都能说了吧,指名说一说边说边写出相应的数量。
学生把算式列在练习纸,然后指名说算式,教师板书,其中第一个-3直接写成红色。
再指名说说各算式表示的意思。其中第一个算式请2~3位学生说一说,并说说下面两组算式共同点是参加一个小组的人数+只参加另一个小组的人数。
(5)同学们,这节课学的内容就是数学中的重叠问题。(指板书)这些人既参加语文小组又参加数学小组,就是重叠问题的重叠部分。
用这样的图来表示重叠问题,最早是由一位英国的.逻辑学家韦恩想出来的,后人就把这样的图称为韦恩图。
日常生活中有很多像今天一样的问题,我们可以通过画图来理解。
(三)、练习。
1、其实像这样的重叠问题在生活中还有很多,请看:
你从题中得到那些信息?你能解决这个问题吗?反馈不同的解决方法。
说说你是怎么想的?表扬圈出来的学生,这样先把重叠部分圈出来,看起来更加明显,算式也不会列错了。
其实这样的题用韦恩图来表示会更清楚。(课件演示)。
2、日常生活中有很多像今天一样的问题,我们可以也通过画图来理解。(练习纸)。
反馈后师问:这几道题的解决方法有什么相同的地方?
引导学生发现:总数=两部分之和-重叠部分。
(四)课堂总结。
通过这节课学习,你有什么收获?如果想说学生较多,就同桌说一说。
(五)拓展题:
同学们表现那么出色,我们再来挑战一题怎么样?
出示课件,说说有哪些信息?同桌讨论讨论,拿出自己的文具摆一摆。
请学生说说自己的猜测,并课件演示。
如果刚才的例题为: