余弦定理教学设计(专业16篇)

时间:2025-02-19 作者:MJ笔神

教学计划的编写应该遵循一定的原则和步骤,确保教学过程的科学性和系统性。让我们一起来看看下面这些教学计划案例,了解一下如何更好地设计和安排教学活动。

余弦定理教学设计(专业16篇)篇一

人教版《普通高中课程标准实验教科书必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

教学重点是余弦定理的发现过程及定理的'应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

余弦定理教学设计(专业16篇)篇二

本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

创设数学情境是“情境。应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第一章1。3正弦、余弦定理应用的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

“情境。应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

2、培养学生自主学习、合作学习、研究(探究)性学习的学习方式。

(1)新教材与一期教材相比,有一个很大的变化就是在课本中增加了若干“探究与实践”的研究性课题,这些课题往往有着一定的实际生活情景,如出租车计价问题,测量建筑高度,邮资问题,“雪花曲线”等等,这些课题除了增强学生的数学应用能力之外,还有一个重要作用就是改变学生以往的学习方式。

在教学实践中,我对不同内容采取了不同的处理方式,像用单位圆中有向线段表示三角比;组合贷款中的数学问题主要在课堂引导学生完成;像邮件与邮费问题、上海出租车计价问题、声音传播问题、测建筑物的高度则采取课内介绍、布置、检查,学生主要在课外完成的方法。学生通过调查、上网收集数据,集体研究讨论,实践动手操作,无形之中使自己学习的主动性得以大大提高,自学能力也有所长足发展,从而有效的培养学生自主获取知识的能力,以适应未来社会发展的需要。

由此可见,新课程突出了“以学生发展为本”的素质教育理念与目标,强调素质的动态性和发展性,揭示了素质教育的本质,把学生素质的发展作为适应新世纪需要的培养目标和根本所在。因此,在教学实践中必须确立学生的主体地位。

(2)从培养学生的学习兴趣着手,变被动接受性学习为主动学习、自主学习、合作学习、研究(探究)性学习。根本改变重教法而轻学法的状况,使学生真正做到不但“知其然”,而且“知其所以然”,教师不仅要授之于“鱼”,更应该授之于“渔”,把本来应该让学生分析、总结、归纳、解决的问题由学生自己来解决。对学习有困难的学生,教师要多给予及时的关照与帮助,鼓励他们主动参与数学学习活动,尝试用自己的方式解题,敢于发表自己的看法,对出现的问题要帮助他们分析产生的原因,并鼓励他们自己去改正,从而增强学习数学的信心和兴趣。对于学有余力并对数学有兴趣的学生,教师可以为他们提供一些有价值的材料,指导他们阅读,发展他们的数学才能。

余弦定理教学设计(专业16篇)篇三

人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

二、学生学习情况分析。

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三、设计思想。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

四、教学目标。

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

五、教学重点与难点。

教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

六、教学过程:

七、教学反思。

本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

余弦定理教学设计(专业16篇)篇四

本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。

教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。

数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。

教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。

文档为doc格式。

余弦定理教学设计(专业16篇)篇五

本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,提出解题需要,引发认知冲突,激起学生的求知欲望,调动了学生的学习积极性;在定理证明的教学中,引导学生从向量知识、坐标法、平面几何等方面进行分析讨论。在给出余弦定理的三个等式和三个推论之后,又对知识进行了归纳比较,发现特征,便于学生识记,同时也指出了勾股定理是余弦定理的特殊情形,提高了学生的思维层次。

命题的应用是命题教学的一个重要环节,学习命题的重要目的是应用命题去解决问题。所以,例题的精选、讲解是至关重要的。设计中的例1、例2是常规题,让学生应用数学知识求解问题,巩固余弦定理知识。例3是已知两边一对角,求解三角形问题,可用正弦定理求之,也可用余弦定理求解,通过比较分析,突出了正、余弦定理的联系,深化了对两个定理的理解,培养了解决问题的能力。本课在继承了传统数学教学模式优点,结合新课程的要求进行改进和发展,以发展学生的数学思维能力为主线,发挥教师的设计者,组织者作用,在使学生掌握知识的同时,帮助学生摸索自己的学习方法。

本课的教学应具有承上启下的目的。因此在教学设计时既兼顾前后知识的联系,又使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

本课学生动手较多,会有很多新问题产生,因此显得课堂时间不足。今后教学要在这方面注意把握。

余弦定理教学设计(专业16篇)篇六

随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。

1教学目标的制定。

制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。

2教法学法的制定。

制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。

3教学重难点的制定。

教学重难点的制定也应结合各层次学生的具体情况而定。

4教学过程的设计。

4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。

4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。

4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。

5练习与作业的设计。

教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。

分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。

将本文的word文档下载到电脑,方便收藏和打印。

余弦定理教学设计(专业16篇)篇七

本节课是高中数学教材北师大版必修5第二章《解三角形》余弦定理的第一课时内容,《课程标准》和教材把解三角形这部分内容安排在必修5,位置相对靠后,在此前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,使得这部分知识的处理有了比较多的工具,某些内容处理的更加简洁。学数学的最终目的是应用数学,可是比较突出的是,学生应用数学的意识不强,创造能力弱,往往不能把实际问题抽象成数学问题,不能把所学的知识应用到实际问题中去,尽管对一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的思维方法了解不够,针对这些情况,教学中要重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际问题(如测量等)的重要定理,它将三角形的边角有机的结合起来,实现了边与角的互化,从而使三角和几何有机的结合起来,为求与三角形有关的问题提供了理论依据。

教科书直接从三角形三边的向量出发,将向量等式转化为数量关系,得到余弦定理,言简意赅,简洁明快,但给人感觉似乎跳跃较大,不够自然,因此在创设问题情境中加了一个铺垫,即让学生想用向量方法证明勾股定理,再由特殊到一般,将直角三角形推广为任意三角形,余弦定理水到渠成,并与勾股定理统一起来,这一尝试是想回答:一个结论源自何处,是怎样想到的。正弦定理和余弦定理源于向量的加减法运算,其实向量的加减法的三角法则和平行四四边形法则从形上揭示了三角形的边角关系,而正弦定理与余弦定理是从数量关系上揭示了三角形的边角关系,向量的数量积则打通了三角形边角的数形联系,因此用向量方法证明正、余弦定理比较简洁,在证明余弦定理时,让学生自主探究,寻找新的证法,拓展思维,打通余弦定理与正弦定理、向量、解析几何、平面几何的联系,在比较各种证法后体会到向量证法的优美简洁,使知识交融、方法熟练、能力提升。

数学教学的主要目标是激发学生的潜能,教会学生思考,让学生变得聪明,学会数学的发现问题,具有创新品质,具备数学文化素养是题中之义,想一想,成人工作以后,有多少人会再用到余弦定理,但围绕余弦定理学生学到的发现方法、思维方式、探究创造与数学精神则会受用不尽。数学教学活动首先应围绕培养学生兴趣、激发原动力,让学生想学数学这门课,同时指导学生掌握数学学习的一般方法,具备终身学习的基础。教师要不断提出好的数学问题,还要教会学生提出问题,培养学生发现问题的意识和方法,并逐步将发现问题的意识变成直觉和习惯,在本节课中,通过余弦定理的发现过程,培养学生观察、类比、发现、推理的能力,学生在教师引导下,自主思考、探究、小组合作相互交流启发、思维碰撞,寻找不同的证明方法,既培养了学生学习数学的兴趣,同时掌握了学习概念、定理的基本方法,增强了学生的问题意识。其次,掌握正确的学习方法,没有正确的'学习方法,兴趣不可能持久,概念、定理、公式、法则的学习方法是学习数学的主要方法,学习的过程就是知其然,知其所以然、举一反三的过程,学习余弦定理的过程正是指导学生掌握学习数学的良好学习方法的范例,引导学生发现余弦定理的来龙去脉,掌握余弦定理证明方法,理解余弦定理与其他知识的密切联系,应用余弦定理解决其他问题。在余弦定理教学中,寻求一题多解,探究证明余弦定理的多种方法,指导一题多变,改变余弦定理的形式,如已知两边夹角求第三边的公式、已知三边求角的余弦值的公式,启发学生一题多想,引导学生思考余弦定理与正弦定理的联系,与勾股定理的联系、与向量的联系、与三角知识的联系以及与其他知识方法的联系,通过不断改变方法、改变形式、改变思维方式,夯实了数学基础,打通了知识联系,掌握了数学的基本方法,丰富了数学基本活动经验,激发了数学创造思维和潜能。

教学中也会有很多遗憾,有许多的漏洞,在创设情境,引导学生发现推导方法、鼓励学生质疑提问、猜想等方面有很多遗憾,比如:如何引入向量,解释的不够。最后,希望各位同仁批评指正。

余弦定理教学设计(专业16篇)篇八

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2、引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3、归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4、讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

1、使学生掌握余弦定理及其证明。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

教学重点是余弦定理及应用余弦定理解斜三角形;

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3、证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4、解决二个任务。

5、操作演练,巩固提高。

6、小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7、作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理教学设计(专业16篇)篇九

“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2、教学重、难点。

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循“提出问题、分析问题、解决问题”的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“现实问题转化为数学问题”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

余弦定理教学设计(专业16篇)篇十

人教版《普通高中课程标准实验教科书・必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。

继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。

教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。

本课的教学应具有承上启下的目的。因此在教学设计时既要兼顾前后知识的联系,又要使学生明确本课学习的重点,将新旧知识逐渐地融为一体,构建比较完整的知识系统。所以在余弦定理的表现方式、结构特征上重加指导,只有当学生正确地理解了余弦定理的本质,才能更好地应用求解问题。本课教学设计力求在型(模型、类型),质(实质、本质),思(思维、思想方法)上达到教学效果。本课之前学生已学习过三角函数,平面几何,平面向量、解析几何、正弦定理等与本课紧密联系的内容,使本课有了较多的处理工具,也使余弦定理的探讨有了更加简洁的工具。因此在本课的教学设计中抓住前后知识的联系,重视数学思想的教学,加深对数学概念本质的理解,认识数学与实际的联系,学会应用数学知识和方法解决一些实际问题。学生应用数学的意识不强,创造力不足、看待问题不深入,很大原因在于学生的知识系统不够完善。因此本课运用联系的观点,从多角度看待问题,在提出问题、思考分析问题、解决问题等多方面对学生进行示范引导,将旧知识与新知识进行重组拟合及提高,帮助学生建立自己的良好知识结构。

余弦定理教学设计(专业16篇)篇十一

一、教材分析:(说教材)。

二、说教学思路。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

三、说教法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

四、说学法。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

五、教学目标。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

六、教学重点。

教学重点是余弦定理及应用余弦定理解斜三角形;

七、教学难点。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

九、板书设计。

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

十、课后反思。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理教学设计(专业16篇)篇十二

教学目标 :

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

教学难点 :描点画出反比例函数的图象。

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程 :

1、从实际引出反比例函数的概念。

我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。

即vt=s(s是常数);

当矩形面积s一定时,长a与宽b成反比例,即ab=s(s是常数)。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

一般地,函数(k是常数,)叫做反比例函数.。

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供。

2、列表、描点画出反比例函数的图象。

余弦定理教学设计(专业16篇)篇十三

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1)、已知两边及其夹角,求第三边和其他两个角。

2)、已知三边求三个内角;

3)、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1.任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

教学重点是余弦定理及应用余弦定理解斜三角形;

分析勾股定理的'结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

余弦定理教学设计(专业16篇)篇十四

《余弦定理》是全日制中等国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1)、已知两边及其夹角,求第三边和其他两个角。

2)、已知三边求三个内角;

3)、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1.任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2.引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3.归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4.讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

教学重点是余弦定理及应用余弦定理解斜三角形;

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课。

3.证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4.解决二个任务。

5.操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理教学设计(专业16篇)篇十五

大家好!

今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。目标的确定。方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

本节内容是江苏出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:

基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。

为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:

1、创设情境,引入课题。

利用多媒体引出如下问题:

a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。

【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。

2、探索研究、构建新知。

(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。

(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。

通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。

在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。

根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:

(1)已知三边,求三个角;

(2)已知三角形两边及其夹角,求第三边和其他两个角。

3、例题讲解、巩固练习。

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。

例题讲解:

例1在中,

(1)已知,求;

(2)已知,求。

【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。

例2对于例题1(2),求的大小。

【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。

例3使用余弦定理证明:在中,当为锐角时;当为钝角时,

【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的'推广”这一思想,进一步加深了对余弦定理的认识和理解。

课堂练习:

练习1在中,

(1)已知,求;

(2)已知,求。

【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。

练习2若三条线段长分别为5,6,7,则用这三条线段()。

a、能组成直角三角形。

b、能组成锐角三角形。

c、能组成钝角三角形。

d、不能组成三角形。

【设计意图】与例题3相呼应。

练习3在中,已知,试求的大小。

【设计意图】要求灵活使用公式,对公式进行变形。

4、课堂小结,布置作业。

先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:

(3)余弦定理的可以解决的两类解斜三角形的问题。

通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。

布置作业。

必做题:习题1、2、1、2、3、5、6;

选做题:习题1、2、12、13。

【设计意图】。

作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。

本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。

余弦定理教学设计(专业16篇)篇十六

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:

1、已知两边及其夹角,求第三边和其他两个角。

2、已知三边求三个内角;

3、判断三角形的形状。以及相关的证明题。

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。

1、任务驱动法。

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。

2、引导发现法、观察法。

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3、归纳总结法。

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4、讲练结合法。

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

(一)知识目标。

2、使学生初步掌握应用余弦定理解斜三角形。

(二)能力目标。

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的.推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标。

1、培养学生的爱国主义精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

(一)导入。

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)新课。

3、证明猜想,导出余弦定理及余弦定理的变形。

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4、解决二个任务。

5、操作演练,巩固提高。

6、小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7、作业:

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

(一)一、教材分析1.地位及作用“余弦定理”是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定......

猜你喜欢 网友关注 本周热点 精品推荐
讲话稿需要有一个明确的主题,并通过逻辑清晰的结构来表达观点。以下是一些讲话稿的实际应用范文,这些范文经过精心的筛选和整理,可以参考其中的写作风格和表达方式。
经验材料能够帮助我们记录工作和学习中的点点滴滴,为我们的成长和进步提供有力的支持。最后,小编为大家推荐了一些经验材料的阅读材料,供大家进一步学习和提升自己的写作
事迹材料的编写需要注重界定主题,并注意结构的合理性和逻辑的严谨性。在下面的范文中,你将会看到一些充满正能量和教益的事迹材料。林x老师于1999年6月毕业于x江师
个人简历是求职者与招聘方进行沟通的重要工具,它可以展示你的专业技能、学术成就和工作经历。为了帮助求职者更好地编写个人简历,我们整理了一些典型案例和实用建议,请大
写一份详尽的述职报告可以让上级领导对你的工作有更全面和深入的了解,为你在职场中的晋升和发展提供有力的支持。在下面的范文中,我们可以看到不同岗位的同事们是如何写好
心得体会可以让我们更深入地思考问题,从而提高我们的学习和工作能力。接下来是一些精选心得体会范文,希望能够对大家的写作有所帮助。下面是小编为大家整理的,供大家参考
通过使用恰当的语言和表达方式,讲话稿能够激发听众的兴趣和思考,达到预期的宣传和交流效果。以下是小编为大家整理的讲话稿模板,供大家参考和使用。老师们、同学们,早
我们每个人都应该意识到总结的重要性,它是我们进步和成长的关键步骤之一。接下来,我们将开启精彩纷呈的讨论环节,请大家踊跃发言。岁月更迭,梦想依然灿烂,美好的理想在
优秀作文是一篇独立完整的文章,它需要有清晰的中心思想和合理的组织结构。小编为大家整理的这些优秀作文范文都是经过精心挑选的,包含了丰富的思想和独特的观点。
教学计划是教师根据学科特点和学生的实际需求,设计和安排一系列的教学活动和任务。接下来是一些教学计划的实例,希望能给大家带来一些灵感和帮助。1、学写4个字。2、正
时光荏苒,一年又将过去,现在是时候对这一年的学习和工作进行一次总结了。在这一年中,我深刻认识到成功并非一蹴而就,它需要持之以恒的努力和不懈的奋斗。为了更好的开发
教学反思可以帮助教师更好地理解学生的学习需求,从而调整教学内容和方法,使教学更加有针对性和有效性。在这里,我为大家准备了一些教学反思的实例,希望对大家的教学工作
班级工作总结是提高班级管理水平和教学质量的重要手段之一。接下来,我们一起来看看小编为大家整理的一份班级工作总结范文,希望对大家有所启发。子在川上曰:逝者如斯夫,
教师演讲稿可以帮助教师更好地研究和应用教学理论,提高自身教育教学水平。在这里,小编为大家推荐一些优秀的教师演讲稿,希望能够给大家提供一些写作的启发。
理想是一种信念,是我们心中的明灯,为我们指引前行的方向。以下是小编为大家收集的理想范文,希望可以给大家一些启发和思考。虽然现在的社会已经比从前好上万倍,但还是有
优秀作文是一篇内容丰富、思路清晰、语言得体的佳作,它能够给读者带来深刻的思考和感受。以下是小编为大家准备的优秀作文范文,希望可以给大家带来一些启发和指导。
无情的时光老人像一阵寒风,走得无声又匆匆,我们又将抒写新的诗篇,我想我们需要好好地做个职业规划了。你知道怎样的职业规划才是适合自己的吗?下面是小编为大家收集的大
实习心得的写作过程可以让自己更深入地思考和分析实习的意义和价值。在实习过程中,小编整理了一些实习心得范文,供大家参考和学习,希望对大家的写作有所帮助。
半年总结是一个自我激励和自我鞭策的过程,它可以帮助我们保持积极向上的态度和动力。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使
优秀学生积极参与学校的各类活动,他们是学校荣誉的体现,为学校增光添彩。如果你想成为一名出色的学生,不妨阅读下面的一些优秀学生的学习心得。小时候,我有一条棕色的小
入党申请书是大学生凭借自己的理想信念和对党的忠诚写下的一份向组织表达参党意愿的文稿。以下是小编为大家汇总的一些大学生入党申请书范文,供大家阅读和学习。
写检讨书需要深入思考和自省,不能浮于表面和敷衍了事。小编为大家收集了一些成功的检讨书范本,希望能够给大家在写检讨书时提供一些思路和参考。尊敬的班主任老师:。您好
自我介绍是一个积极主动的行为,通过自我介绍,我们可以主动与他人交流,建立起联系。希望以下范文能给你一些帮助,让你在自我介绍时更加流利和自信。我叫xxx,今年27
心得体会是对自己成长轨迹的记录,可以帮助我们回顾过去,更好地规划未来的学习和发展方向。以下是一些精选的心得体会范文,希望能对大家的写作有所启发和提高。
月工作总结有助于发现工作上的不足之处,并提出改进的方法和措施。阅读其他人的月工作总结范文,可以拓宽我们的思路和观点,提升自己的写作技巧。。为普及反洗钱知识、增强
读书心得可以帮助我们深入思考书中的观点,拓宽我们的思维视野。下面是一些读书心得的范文,希望能够给大家写作提供一些参考和启示。童年早已不甚遥远,但童年的琐事依旧不
更多申请书是在申请工作、学校或基金会等机构时所需的一种书面材料,它是展示个人能力和经历的重要途径。以下是小编为大家整理的一些申请书范文,供大家参考,了解写作的技
检讨书是一种反思和自我批评的方式,可以帮助我们认清错误和不足。以下是一些来自知名企业的检讨书,希望能给大家带来启示和思考。尊敬的校领导:我是初x年级x班x,因为
发言稿的撰写需要提前准备,要充分考虑听众的背景和需求,以便更好地引起他们的兴趣和共鸣。以下是一些备受赞誉的发言稿,让我们一同感受其中的力量和感染力。
通过写检讨书,可以帮助我们认识到自己的错误和不足之处。小编整理了一些经典的检讨书示范,希望对大家撰写一份优秀的检讨书有所帮助。尊敬的数学老师:伴随一曲《每当我走
心得体会是一种对自己思考和行动的梳理,帮助我们更好地认识自己和改进自己。以下是小编为大家整理的一些深入思考的心得体会,希望能够给大家带来一些新的思路和启示。
转正工作总结也是对过去一段时间所面临的工作问题和挑战进行分析和思考的机会,为今后更好地发展提供指导。为了帮助大家更好地完成转正工作总结,小编搜集整理了一些优秀的
总结心得体会可以激发我们的思维潜能,提高我们的批判性思维和创新能力。如果你对心得体会范文感兴趣的话,可以多多关注我们推出的相关内容,以便及时获取更多的信息。
优秀作文是在结构安排上严谨有序,能够让读者在阅读中获得清晰的逻辑线索。接下来,小编为大家推荐几篇优秀作文,希望大家可以从中学习到一些有关写作的技巧和方法。
大班教案是为适应大班幼儿的特点和需求而设计的教学计划,它旨在提供系统、全面的指导。数字认知教案:通过数字认知,培养大班学生的数学思维和逻辑思维能力。
作文是一种对学生综合素质的考核,写一篇优秀作文需要多方面的能力。小编为大家整理了一些优秀的作文范文,欢迎大家共同学习和交流。陌生人,一个既熟悉又陌生的字眼。小时
心得体会是对个人在学习、工作、生活等方面的一种反思和总结,它能够帮助我们发现问题、总结经验、提升能力。以下是小编为大家整理的一些心得体会范文,供大家参考。希望能
教案的编写需要考虑到学生的认知水平和学习兴趣,以促进学习的积极性。请大家看一看以下的高二教案范文,或许可以对你们的教学工作有所帮助和启发。四百多年前文艺复兴时期
党课是党组织对党员进行教育和培养的重要方式之一,它有助于提高党员的组织纪律性。以下是一些党课讲师的精彩演讲摘要,欢迎大家共同学习。按照上级党委要求和党支部学习教
工作计划书是对工作进行整体规划和安排的重要工具,可以帮助我们达到预期的目标。想要完善自己的工作计划书?不妨看看以下范文,了解如何组织和表达工作内容和工作流程。
教学反思是教师针对自己的教育教学工作进行思考和总结的一种重要方式,它可以帮助教师发现自身的教学不足并及时改进。您将看到的是一篇精心编写的教学反思模板,希望能给您
国旗下讲话稿是一种庄重而庄严的演讲文稿,它以国旗为象征,表达了对祖国的热爱和忠诚。国旗下是我心灵的归宿,是我开启时光机的地方,是我感受国家脉搏的窗口。
优秀学生对待学习态度认真,能够主动寻求知识,不断扩展自己的学习领域。以下是一些优秀学生的成功经验和心得分享,希望对你有所启发。“哎,这位……孩子,等一下。”循声
范文范本是从优秀作品中提取出来的典型样本,可以帮助我们了解作品的特点和结构。以下是小编为大家搜集整理的一些总结范文,希望能够给大家带来一些写作上的启发和灵感。
诚信是人际关系的基础,只有真诚相待才能建立牢固的友情。以下是小编为大家收集的关于诚信的范文,供大家参考学习。尊敬的领导、老师、亲爱的同学们:大家上午好!我是来自
奖学金申请书是向学校或机构申请奖学金时所需的一种书面材料。接下来,我们将为大家展示一些经典的奖学金申请书范文,以供大家参考和学习。尊敬的领导老师们:你们好!我是
教学工作计划是为了规划和安排教学工作而设计的一份详细计划。最后,希望大家在制定教学工作计划时,能够灵活运用这些范文中的经验和教训,为学生提供更好的教育和教学服务
思想汇报是我个人成长过程中非常重要的一环,通过写作可以使我更加深入地思考和反思。这些思想汇报范文是作者根据自身经验总结而成,希望对大家有所启发。敬爱的党组织:被
比赛是为了展现个人或团体在某项活动中的实力和技能而进行的竞争形式。在下文中,将分享一些精彩的比赛总结范文,希望可以给大家提供一些写作方面的启示。各位同学:为了丰
通过总结和概括自己的心得体会,我们可以更好地提升自己的能力。以下是一些经典的心得体会例句,将会为大家展示一个思维的世界。对于我们每一名公司员工来说,无论是管理者
医务工作是指医务人员在医疗机构中开展的各项医疗服务和管理工作。以下是医务工作中效率提升的一些建议和方法,希望能为大家提供借鉴。为了更好地服务于人民群众,提高服务
个人简历是你向潜在雇主展示自己能力和特长的窗口,必须抓住这个机会,让自己脱颖而出。部分求职者的个人简历如下,希望能给您写作个人简历带来灵感。在个人简历中基本项目
优秀作文是用文字凝固的思维,给人以启迪,让人受益无穷。以下是小编为大家收集的优秀作文范文,供大家参考和学习。还记得那年冬天,天气很冷,一家人窝在家里不出门。于是
社会实践报告可以帮助学生发现自己的兴趣和潜能,为未来的职业规划和学习方向提供参考。5.小编为大家整理了一些有关社会实践活动的报告范文,希望对大家有所帮助。
优秀作文能够通过艺术性的表达方式,打动读者的心灵,引起读者的思考和共鸣。小编为大家整理了一些优秀作文的素材,希望能够给大家提供一些创作的思路和借鉴。
通过活动策划,我们可以更好地规划活动流程和活动内容,确保活动的顺利进行。接下来,我们将向大家介绍一些活动策划的实用技巧和方法,希望能为大家的工作带来一些帮助。
优秀作文要具备良好的逻辑结构,组织有序,每一段都能够衔接自然,使整篇文章有条不紊地展开。为了提高写作水平,不妨阅读一些优秀作家的作品,从中学习他们的独特表达方式
述廉报告是一种对廉政工作进行总结和概括的书面材料,它旨在促使我们反思自身的廉政素养和工作表现。在我们公司,每年都要进行述廉报告,以确保廉政建设的持续推进和有效实
教学工作计划的制定要充分考虑教学过程中的评估和反馈机制,以便及时调整教学策略。教学工作计划的成功案例值得我们学习和借鉴,以下是一些相关的范文供大家参考。
优秀作文是对自己和他人的思考和交流,它可以帮助我们更好地理解问题。这些是一些优秀作文的精华部分,希望对大家的写作有所启发。那天跟老公幸运地订到了票,要回乡下探望
通过写读后感可以使我们更加深入地思考和领悟作品中的情感和思想。读后感是读完一本书或文章后的个人感受和思考,通过写读后感可以更深入地理解和吸收所读内容。读后感可以
学习总结是对自己学习成果的一种总结和反思,帮助我们更好地了解自己的学习情况。以下是一些学习总结范文,它们涵盖了不同学科和不同层次的学习内容。自从我开始我的舞蹈学
月工作总结是一个总结和梳理的过程,通过总结可以反思工作中的得失和经验教训,为下一个月的工作做好准备。在这里,小编为大家整理了一些精选的月工作总结范文,供大家参考
心得体会的写作可以帮助我们更深入地理解和掌握所学知识,同时也可以提高我们的表达能力和思维能力。以下是小编为大家整理的心得体会范文,希望可以给大家一些启发和参考,
优秀作文不仅要表达清晰,还要具备丰富的语言表达能力,使读者产生共鸣和思考。接下来请大家一起欣赏一些优秀作家的杰作,相信它们会对大家的写作有所帮助。如果有人问我:
讲话稿范文的写作还需要注意借助一些具有感染力的修辞手法,使得讲话内容更具吸引力和感染力。以下是小编为大家整理的几篇优秀讲话稿,希望能够帮助到大家。大家上午好!本
评估你在工作中所遵守的职业道德和职业规范,以及对工作质量的要求和标准。有没有写好的述职报告范文?这里有一些给你参考,或许能给你的写作带来新的思路。党的十六大提出
范文范本可以帮助我们分析和理解优秀作品的特点和内涵。以下是一些获奖作文的摘录,这些作品在语言表达和主题阐述方面都有独特之处,值得大家学习和借鉴。下附署名)要求准
写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。心得体会是在学习、工作或生活中对自己的感悟和经验总结的一种文字表达方式,它可以帮助我们加深理解,提
讲话稿要具备逻辑性、条理性和感染力,能够引起听众的兴趣和共鸣。以下是几篇脍炙人口的讲话稿,相信对大家的写作有所启发。各位领导、老师、同学们:大家下午好!冬日暖阳
月工作总结可以帮助我们总结和梳理工作中的经验和教训,以便在以后的工作中避免重复犯错,提高工作质量。如果你正在面临写月工作总结的任务,下面的范文可以为你提供写作思
思想汇报可以帮助我们思考人生意义和价值观,形成正确、积极的思维方式。在思想汇报中,每个人都有自己独特的风格和见解,下面是一些典型的思想汇报范例。敬爱的党组织:短
优秀作文不仅要求语言表达准确流畅,更需要思想深度和触动人心的艺术魅力。以下是一些知名作家的优秀作文摘抄,可以让我们感受到优秀作文的力量和魅力。在这万物复苏春暖花
通过写心得体会,我们可以更好地了解自己的优点和不足,从而改进和提高自己。以下是小编整理的一些心得体会范文,供大家参考和借鉴。2月4日晚,第二十四届冬季奥林匹克运
心得体会是对自己成长过程中所获得的经验和领悟的一种反思和总结,可以帮助我们更好地规划未来的方向和目标。接下来是一些普通人的心得体会,可能并不出名,但由衷地分享自
读后感可以记录自己的阅读历程和成长,对于培养良好的阅读习惯和思维方式有着积极的作用。以下是一些经典作品的读者读后感摘录,希望能够给大家带来一些启示。
参与竞聘可以帮助我进一步了解所要竞聘的职位和相关要求。以下是一些成功竞聘者的简历和自我介绍范文,供大家参考借鉴。竞聘演讲的一个重要特征就是具有竞争性,而竞争的实
在写月工作总结时,我们可以通过分析成功经验和失败教训来总结经验,为以后的工作经验积累提供借鉴。在下面,小编为大家分享了一些明星员工的月工作总结,他们的经验或许能
报告范文可以帮助我们客观地评估和分析某一情况或问题,并提出相应的建议和解决方案。每篇报告范文都有其独特的特点和亮点,值得我们仔细品味和学习。1.后勤管理方面:加
通过教学计划,教师可以对自己的教学进行有针对性的规划和调整,提高自身的教学能力。接下来是一些实用的教学计划参考资料,可以帮助教师们更好地编写自己的教学计划。
社区工作计划需要不断评估和调整,以适应社区的变化和发展。如果你还对社区工作计划存在疑问或需要更多指导,以下是一些常见问题和解答。工作计划网发布2019年社区居委
发言稿是在特定场合发表意见、表达观点的一种书面材料,它可以传递信息,引起共鸣。对于那些刚开始撰写发言稿的人来说,参考一些优秀的范文可以帮助他们更好地理解写作技巧
优秀作文需要有扎实的基础知识,准确的表达能力,以及独特的观察力和思考能力。小编为大家整理了一些优秀作文范文,希望可以给大家带来一些启示和借鉴。时间飞快地流逝着,
优秀作文不仅需要有扎实的基础知识,还需要有独到的见解和独特的表达方式。优秀作文是对学习过程的一次总结和反思,可以发现自己的不足和提高的空间。写一篇优秀的作文,首
发言稿的撰写需要注意语言简洁、逻辑清晰,同时要注重情感表达和语调掌握。让我们一起来探索和分享发言稿的魅力,通过语言的力量,共同创造出更加美好的演讲体验。
写一篇优秀作文,需要有充分的准备和深入的思考,才能创造出独特的意境和感受。以下是小编为大家挑选的一些优秀作文范文,希望能够给大家带来一些启示和思考。
实习报告要求实习生能够客观地总结分析实习期间所面临的问题和解决方法,并进行合理的改进建议。以下是一些来自各个行业的实习报告,它们涉及到不同的工作岗位和实习经验。
实习报告旨在展示实习期间的工作成果和所获得的经验,对于今后的发展和求职具有积极的影响。以下是一些实习报告的案例,希望对大家写作实习报告有所帮助和指导。
教学计划是为了有效地组织和安排学习内容、教学方法和评价方式而制定的一份计划,它能够指导教师和学生的学习活动,提高教学效果和学生的综合素质。教学计划范文九:小学音
实习报告是对实习期间所学知识和工作经验进行总结和概括的一种书面材料。以下是小编为大家收集的实习报告范文,供大家参考和借鉴,以帮助大家更好地完成自己的实习报告。
教学工作计划可以帮助我们系统梳理教学内容,明确知识结构和思维导向。接下来是一些教学工作计划的研究成果和实施案例,供大家参考和学习借鉴。1.教幼儿认识1、2,知道
军训心得体会是对军事素质和纪律观念的形成和巩固的概括和反思。接下来,我们看看一些同学写的军训心得体会,从他们的视角感受军训的意义和价值。小学六年的时光结束了,现
欢迎各位嘉宾、亲爱的观众朋友们,今天由我来为大家主持这个令人期待已久的活动。大家可以看一看下面的主持人技巧手册,或许会对你有所帮助。主持词。欢迎大家学习参考。同
写检讨书是一个锻炼自我反思能力的过程,它有助于我们避免再犯相同的错误。以下是一些成功人士的检讨书范文,通过学习他们的经验,我们可以更好地反思自己的行为。
教学计划可以帮助教师合理安排教学内容和进度,确保学生能全面、有序地学习。教学计划范文的收集和整理,有助于教师们相互学习借鉴,共同提高教学水平。本设计凸现学生个性
在写作中,要注重文章的结构和层次感,使作文更具条理性和层次感。以下是小编为大家收集的优秀作文范文,希望能给大家提供一些写作的启发和借鉴。在一个寂静的夜晚,周围除
教学工作计划还可以帮助教师合理安排时间和任务,并提高教师的工作效率。现在,让我们一起来看看一些教学工作计划的实例,或许能给你一些灵感。2、品味语言特点,方言的运
在写实习报告之前,我们需要对实习期间的工作内容和所取得的成果进行梳理和整理。以下是小编为大家收集的几篇实习报告范文,供大家参考和参考。转眼间,一个月的实习时间即
在学习总结中,我们可以反思自己的学习过程,寻找提高学习效果的方法和策略。在下面的范文中,你可以看到不同学习者的总结风格和思考角度,希望对你的学习有所帮助。
五年级教案的制定需要集体智慧的结晶,教师们可以进行经验分享和教学交流,相互借鉴,不断完善教案。教案是教师进行教学活动的重要依据,以下是一些优秀教案的范文供大家学