通过教学工作计划的制定,可以提前安排好每个教学环节的内容和时间,确保教学活动的顺利进行。小编为大家汇总了一些教学工作计划的范文,供大家参考借鉴。
实际问题与一元一次不等式教案范文(14篇)篇一
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨。
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力。
达标检测。
展示检测内容。
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果。
知识与收获。
引导学生归纳探究内容。
学生回顾总结学习收获,交流学习心得。
学会归纳与总结。
布置作业。
教材p51.习题2.6知识技能1;问题解决2,3.
板书设计。
实际问题与一元一次不等式教案范文(14篇)篇二
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学过程(师生活动)设计理念。
(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
实际问题与一元一次不等式教案范文(14篇)篇三
教学目标:
教学过程:
新课:
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的`起点为购物款达___元后;。
乙商店优惠方案的起点为购物款过___元后。
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
练习:
1。某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”。乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元。
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠。
2。某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1)买一只茶壶送一只茶杯;。
(2)按总价的92%付款。现有一顾客需购买4只茶壶,茶杯若干只(不少于4只)。
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
补充练习:
1。有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1。5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费。问这批货在月初还是月末售出好。
2。某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0。5元,超计划用水超出部分每吨收费0。8元。如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0。28元,已知每抽一吨水需成本0。07元。问该单位是用自来水公司的水合算,还是自建水泵房抽水合算。
实际问题与一元一次不等式教案范文(14篇)篇四
设购买x台电脑,如果到甲商场购买更优惠。
问题2:如何解这个不等式?
去括号,得。
去括号,得:6000+4500x-450044800x。
移项且合并,得:-300x1500。
不等式两边同除以-300,得:x5。
答:购买5台以上电脑时,甲商场更优惠。
实际问题与一元一次不等式教案范文(14篇)篇五
在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
(二)导入知识,解释疑难
1.教材内容讲解
2.探究活动
1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
2.双基练习
1.已知方程组 有正整数解,则k的取值范围是_________.
2.若不等式组 无解,求a的取值范围.
3.当2(m-3) 时,求关于x的不等式 x-m的解集.
某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数
实际问题与一元一次不等式教案范文(14篇)篇六
在本节课的教学中个人的优点:
1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然。
2、精心处理教材:我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。
3、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节高金凤同学区分了解一元一次不等式组其实和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定。
在本节课的教学中个人的缺点:
5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。
实际问题与一元一次不等式教案范文(14篇)篇七
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程。
创设情境,导入课题,展示教学目标。
2.展示学习目标:
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣。
学生自主研学。
指出探究方向,巡回指导学生,答疑解惑。
实际问题与一元一次不等式教案范文(14篇)篇八
学习目标:
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的`解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
实际问题与一元一次不等式教案范文(14篇)篇九
[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题。
[学习难点]寻找实际问题中的不等关系,建立数学模型。
[学习过程]。
一、春耕。
1.不等式的基本性质有哪些?
2、解下列不等式,并把解集在数轴上表示出来。
(1)3x2x+1;(2)-4x3.
二、夏耘:
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后。
我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、秋收:
1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”。乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元。
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠。
2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:
(1)买一只茶壶送一只茶杯;
(2)按总价的92%付款。现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).
请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?
四、冬藏(补充练习):
1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费。问这批货在月初还是月末售出好。
2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元。如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元。问该单位是用自来水公司的水合算,还是自建水泵房抽水合算。
3.错题回顾。
实际问题与一元一次不等式教案范文(14篇)篇十
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点。
正确分析实际问题中的不等关系,列出不等式组。
知识重点。
建立不等式组解实际问题的数学模型。
探究实际问题。
出示教科书第145页例2(略)。
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结。
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
实际问题与一元一次不等式教案范文(14篇)篇十一
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
七、说板书设计。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
实际问题与一元一次不等式教案范文(14篇)篇十二
尊敬的各位老师:
对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。
不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。
二、说学情。
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标。
根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能。
认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
(二)过程与方法。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
(三)情感态度价值观。
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点。
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
(二)教学难点。
实际问题与一元一次不等式教案范文(14篇)篇十三
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的`阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
实际问题与一元一次不等式教案范文(14篇)篇十四
本节课的内容,是人教版七年级下册第九章第二节“实际问题与一元一次不等式”。它是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题。这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径。通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题。经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程。促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法。不等式与现实生活中联系非常紧密,解决好这类应用题,有助于学生在以后的日常生活中自主灵活应用所学知识解决实际问题。
七2班班现有56名同学,部分学生基础较差,拔尖学生少,尤其个别学生底子太薄,学生学习较为被动,预习工作做得不够认真,同时学生学习数学的积极性不高,基本能力较差,解决问题的能力不强,知识掌握不够扎实,运用不够灵活。从学生学习的心理基础和认知特点来说:学生已经在前一阶段学习的学习中已经具备了实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用。虽然初一学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍。
一元一次不等式的应用,是中学数学的重要内容,和一元一次方程应用相似,对培养学生分析问题、解决问题的能力,体会数学的价值都有较大的意义.对实际生活中的不等量关系、数量大小比较等知识,学生在小学阶段已经有所了解.但用不等式表示,并对不等式的.相关性质进行探究,对学生是新的内容。这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。分组活动,先独立思考,再组内交流,然后各组汇报讨论结果,可极大调动学生的创造积极性,应把握学生的创新潜能,使不同层次的学生都能得到发展。在实施教学时,要根据课程改革的基本理念和教材特点组织教学.结合具体内容,让学生经历知识的形成与应用过程。
知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
创设情境,研究新知。
(出示一个解不等式的问题,为后面新知作铺垫)。