六年级教案能够帮助教师合理安排教学内容和教学方法,以达到教学目标。在以下是一些经验丰富的教师编写的六年级教案范文,或许对教师的教案编写会有所帮助。
六年级数学圆柱教案(通用22篇)篇一
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页“练一练”第1题自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、复习引新。
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
二、教学新课。
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
口答练习八第1题。
5.教学圆锥高的测量方法。(见课本第13页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的.圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积×。
=底面积×高×。
用字母表示:v=sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习。
1.做“练一练”第2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。
2.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
3.做练习三第3题。
让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。
四、课堂小结。
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业。
练习三第4、5题。
六年级数学圆柱教案(通用22篇)篇二
教科书第29~31页的内容,练习七第1题。
教学目标。
1.使学生能认识圆柱和圆锥,了解他们的特征及区别。
2.通过观察、想象、操作、思考、讨论等活动,培养学生的观察能力、动手操作能力,发展学生的空间观念。
3.激发学生学习数学的兴趣和自信心,体会数学与现实的联系。
教学重点。
从实际生活中常见的圆柱形物体抽象出圆柱的几何图形,让学生经历圆柱、圆锥特征的探索过程。
教学难点。
使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长和宽与圆柱的关系,建立空间观念。
学生准备几个圆柱形的实物,一张白纸,直尺等。
教学过程。
一、摸猜游戏,引入课题。
(1)(教师用纸箱,装上长方体、正方体、圆柱、球体)教师:老师这个纸箱中有几个长方体、正方体等形状的物体,下面我请一位同学上台来摸一摸,一边摸一边描述自己摸着的几何体的特征,其他同学边听他描述,边猜测是什么形状的物体。
教师:我们今天就来研究一下圆柱的特征。
二、自主探究,学习新知。
1.认识圆柱,并探索特征。
教师出示圆柱。
教师:这就是圆柱。各小组的同学拿出你们(或老师准备)的圆柱,摸一摸,了解一下圆柱由几部分组成。
学生按小组互相交流,感知圆柱的特征。
全班交流小结,教师根据学生的发言进行总结和板书。
板书:两个圆,一个曲面。
学生说说自己想的办法。
教师:大家选择自己认为可行的办法试一试。
学生分小组操作。(可以涂上颜色、墨水在纸上印,可以量圆的周长,可以量直径等)。
交流探索方法和结果,教师引导总结。
板书:相等的(在“两个圆”板书基础上补充)。
2.测量圆柱的高。
学生:高矮不同。
教师:那你能说说什么是圆柱的高?
学生充分发言,教师引导小结:圆柱两个底面之间的距离就是圆柱的高。
观察实物,讨论:圆柱有多少条高?它们之间有什么关系?
通过观察得出:圆柱的高有无数条,它们都相等。
教师指导学生测量圆柱的高。学生拿出各种圆柱进行测量。
学生汇报测量结果。
3.探究圆柱侧面的特征。
学生动手操作,教师巡视指导。
全班交流:沿高剪开后展开得到一个长方形;也可能得到一个正方形;斜着剪得到一个平行四边形。
请学生观察、思考并讨论:展开后的长方形(或正方形、平行四边形)与圆柱有什么关系?
学生动手操作:把展开后的长方形还原成圆柱的侧面,发现:长方形的长等于底面圆的周长,宽就是圆柱的高。(板书)。
4.课堂小结。
教师:今天我们探究了圆柱的特征,大家说说,圆柱有些什么特征?
三、课堂练习。
1.判断下面那些是圆柱,并说明理由。
教科书第32页练习七第1题。
2.说说生活中哪些物体是圆柱。
六年级数学圆柱教案(通用22篇)篇三
(1)圆锥的高是。圆锥有()条高。
(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。
(3)下图圆锥的高是()cm。
(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。
二、填一填。
1.指出圆锥的“底面”和“高”。
2.圆锥的底面形状是(),侧面是()面。
3.从圆锥的顶点到底面圆心的距离是圆锥的()。
六年级数学圆柱教案(通用22篇)篇四
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学难点:圆柱体侧面积计算方法的推导。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、笔筒等。
教学过程:
师:(拿着圆柱模型)昨天我们认识了圆柱,谁来说说圆柱有哪些特征?(学生回答略)。
师:拿出圆柱形状的罐头,辨析:外面的商标纸的面积就是圆柱的什么?学生(圆柱的侧面积)。好,今天我们首先来探讨圆柱的侧面积。(板书:圆柱的侧面积)。
师:想一想如何计算包在外面的商标纸的面积?
生:圆柱的侧面是一个曲面,所以商标纸包在外面也是曲面,必须要把它拿下来。
师:说的对呀,那么怎么把商标纸拿下来,拿下来后和圆柱有什么关系?请同学们小组合作,拿出你们带来的圆柱形物体,动手操作去探究,去发现。
汇报交流:
生1:我们是沿着圆柱的高剪开的,剪开后就是一个长方形,-----。
(还没有等他说完,另一个学生就抢着说)。
生2:我们是斜着剪的,剪开后得到一个平行四边形;
我再问:还有不同的剪法吗?
生3:我没有剪,就是沿着罐头的接头撕开的,展开后也是一个长方形。
生4:我这个圆柱的商标纸有点紧,我撕得有点破,不太像长方形。
生5:简单,用我们上学期学的转化法就行了。接着他说了方法:就是再把那两种沿着高对折,剪开重新拼成长方形。
我照着他说的做演示,并且大声表扬他说:“同学们,这并不简单,转化方法是一种非常重要的数学思想方法,学会用它,就会化难为易,化复杂为简单啦!”
师:那么,我们可以总结一下,把圆柱的侧面沿着高剪开可以得到一个什么形?
师:这时,长方形的长和宽与圆柱有什么关系呢?(引导学生观察、发现)。
生:长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,得到圆柱的侧面积=底面周长×高。
生:老师,平行四边形也能推导出来,不需要变成长方形!让他来说说看,平行四边形的底就是圆柱的底面周长,平行四边形的高就是圆柱的高,也能推出来。我们给他以热烈的掌声,为他的精彩发言而喝彩!
生6:老师,刚才我没有用剪刀剪开,也没有撕,我也能推导出圆柱侧面积的计算方法。接着他边做边说:我这个商标纸有点松,我直接拖下来压平,这时也是一个长方形,长方形的长就是圆柱的底面周长的一半,长方形的宽就是圆柱的高,长方形的面积×2就是圆柱的侧面积,也就是底面周长的一半×高×2,所以圆柱的侧面积=底面周长×高。
师:今天同学们表现真不错,通过自己的探究活动,有自己的亲身体验,有自己的独特发现,同时我们从不同的途径得到了一个共同的结论,真棒!下面如果用s表示侧面积,c表示底面周长,h表示高。你能写出圆柱体侧面积的公式吗?(板书:s=ch)。
基本练习(求侧面积)。
1、底面周长是1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
师小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
师:我们掌握了圆柱的侧面积的计算方法,那么表面积怎样计算呢?
请大家把上节课自己制作的圆柱模型展开,观察一下,援助的表面由那几个部分组成?
生:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积。
5.教学例4。
课件出示例4的题目。
1教师:这道题已知什么?求什么?
3教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
4介绍进一法。
四、学以致用,灵活运用。
师:从例4可以看出来数学来源于生活,下面我们就来解决几道生活中常出现的问题。
提高练习:
师:我们在解决实际问题时,一定要分析好求的是哪一部分的面积?在选择解答方法。
设计制作一个笔筒需要解决哪些问题呢?怎样确定笔筒的大小?
五、师小结:下课铃响起,老师希望在座的各位同学能够应用本节课所学知识制作出的笔筒送给你最喜爱的人。
六、板书设计:
圆柱的侧面积=底面周长×高。
s = ch。
圆柱的表面积=圆柱的侧面积+底面积×2。
步的几何知识概念,空间想象力的基础上进行教学的。本节课的教学目标是通过教学培养学生的合作意识和从生活实践中探求知识的学习品质;使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱体侧面积和表面积;培养学生观察、操作、概括的能力。教学的重、难点是圆柱体侧面积计算方法的推导。
教学设计意图:对于《圆柱的表面积》的教学,以往我都是在第一课时《圆柱的认识》的教学中推导出圆柱侧面积的公式,然后在第二课时《圆柱的表面积》教学时,要求学生在教师的指令下进行操作,将圆柱的侧面展开得到一个长方形,再比较两者之间的关系,从而推导出侧面积公式,然后通过一系列的练习来加深巩固,课堂的教学设计以练笔的形式进行教学,但这样的教学学生的学习效果不明显,容易把求表面积中所应用到的公式混淆在一起,而且这种教学手段学生是在老师的牵引下被动学习,不利于学生创造性思维的发展,局限了学生应用已有知识去解决问题的能力。今天我再教学《圆柱的表面积》,如何让学生充分运用已有的知识经验和基本技能,用自己的思维方式去尝试解决新问题,构建新的知识,这是本节课教学设计的灵魂。
教学反思:
我首先解决的是“商标纸的面积就是圆柱的侧面积”,再进而启发学生想到“如何把商标纸拿下来”,学生自然就想到“用剪或其他方法”,探究的方向准确后,我则放手让学生去发挥,去操作,留给学生大量的思维空间。学生在活动中,会随着操作的不同而有不同的发现,个性化的精彩随之绽放!中国有句古话就是:给你点颜色,你就开染坊!我觉得确实是的,我们的学生就是这样:你给他一个探究的空间,他就会回馈你一个意想不到的惊喜,还你以一幅精彩的画面!“天高任鸟飞,海阔凭鱼跃”,只有为学生的思维提供足够的时间和空间,才能让学生“如鱼得水”,让学生的精彩得以释放,让学生的潜能得以发挥,让学生的智慧充分展示,让我们的课堂永远充满生命和活力!
六年级数学圆柱教案(通用22篇)篇五
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识。
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
:认识圆柱的特征,掌握圆柱侧面积的计算方法。
认识圆柱的侧面。
一、复习旧知。
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。
二、教学新课。
1.认识圆柱的特征。
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。
4.教学侧面积计算。
(1)认识侧面的形状。
六年级数学圆柱教案(通用22篇)篇六
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
六年级数学圆柱教案(通用22篇)篇七
1.教学内容。
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、说教法。
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1.直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法。
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程。
对本节课的教学,我们设计了以下几个环节,
(一)复习旧知识,为引入新知识作准备。
1.求下面各圆的面积(口算),单位为厘米。
(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。
2.什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标。
1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2.展示学习目标,学生认读目标。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标。
1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。
2.演示操作,揭示新知。
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
六年级数学圆柱教案(通用22篇)篇八
圆柱的认识是全日制聋校实验教材第十五册第二单元的内容。圆柱是一种比较常见的几何立体图形,这部分内容包括圆柱的特征,圆柱各部分的名称和圆柱侧面展开图。教学这部分内容,有利于发展学生的空间观念,为进一步学习圆柱的侧面积,表面积,体积和解决实际问题打好基础。
由于聋校八年级学生已经初步具备了一定的自学能力,能够根据具体情况,在已有认知的基础上进行相互探讨,所以我在本课采用让学生动手操作、自主学习、合作探究等方法来获取新知识。并利用多媒体课件来突破本课的重、难点,同时针对聋生听力受损,语言发展相对滞后的特点,在课堂上注重了聋生语言的培养,采用双语教学,鼓励聋生自主发言,发展聋生的语言。
1、知识与技能目标。
使学生知道圆柱各部分的名称,理解圆柱的侧面展开图,掌握圆柱的特征。
2、过程与方法目标。
通过观察、想象、操作、讨论等活动,培养学生自主探究、动手实践、合作创新的能力;同时渗透转化的思想。
3、情感态度价值观目标。
运用课件提供的教学情境,使学生能直观感受圆柱的侧面展开图,初步渗透事物发展、变化规律的辩证观点。并使学生切实感受到数学与自己的生活息息相关,体验到学习数学的价值。
教学重点:掌握圆柱的特征。
教学难点:理解圆柱侧面展开图的特点。
本课我采用了实践操作法、课件演示法、小组讨论式教学法等相关的教法。教师只是以组织者,引导者与合的身份,引导学生主动参与到整个学习过程中去,在互动的过程中充分地激起学生的探究热情。因此我精心设计了以下几个环节。
(一、)创设情境,激趣导入。
1.打开多媒体课件,出示圆柱的实物模型。同时感知生活中的一些具体实物,让学生明白数学于生活。
(通过以上教学,让学生初步接触圆柱,从生活实际感知圆柱,感受数学同生活息息相关。同时很巧妙自然的引入了课题,为学习新课做好铺垫。)。
(二、)自主探究,了解圆柱。
1.学生自主学习,认识圆柱的各部分名称及特征。
2.生汇报,师订正。通过学生的语言,描述出圆柱各部分的特征,师课件演示加以验证。(课堂实录)。
(针对聋生注意力不集中的特点,我让学生自主探究,自己提供教学材料,这样能迅速激发学生的探索兴趣,为探求新知作好心理上的准备,并运用课件验证了自己的想法。对圆柱的底面、侧面和高进行了演示,让学生清晰的感知各部分的名称和特征,一目了然,更加有效地激发了学生的观察兴趣,同时提高了学生的注意力。)。
(三、)合作交流,深化感知。
1.合作探究,圆柱的侧面展开。
(1)学生分组动手操作:把圆柱模型的侧面剪开,再展开,观察形状。
(2)师:你是怎样剪的?展开后得到了一个什么图形?
(3)学生操作后汇报,教师通过课件验证和补充。(课堂实录)。
(该环节是精心设计的,力求让学生成为学习的主人,通过学生的合作探究,体现学生在数学课堂上的主人意识。同时通过多媒体课件的演示,展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征。)。
2.同伴互助,寻求发现。
(1)让学生在动手操作中得到展开后长方形的长和宽与圆柱的关系。
(2)教师课件演示展开图加以验证,轻松的突破本课的难点。(课堂实录)。
(让学生在合作中发现问题、探讨问题、解决问题,激发学生的求知欲望,同时通过形象的课件演示,轻松的分散了本课的难点,突出了本课的重点;调动了学生学习的积极性。)。
(四、)巩固拓展,延伸应用。
课件出示:
1、下面哪些物体是圆柱?
2、指出下列圆柱的底面、侧面和高。
3、实际测量圆柱的底面周长和高。
(练习的设计,既有对刚刚学过的圆柱认识的运用,也有围绕易混易错之处,让学生用手势判断,使学生在宽松的氛围里,勇于发言、敢于辩论。训练说理能力的同时,学生的思维也得到训练。)。
(五、)自主小结,提升理念。
师:我们初步认识了圆柱,谁能告诉老师,对于圆柱你都知道了什么?
(这既是课堂小结,也是对学生的人文培养重要体现。让学生在自主发挥的同时,培养了学生的表达能力。)。
信息技术作为一种教育手段,越来越多的被运用到课堂教学中,不但能创设一定的情境,而且能调动学生的积极性,更加的凸显教学效果。而flash课件更是以其演示功能强大,动画效果明显等特点被广大教师经常所应用。本课我运用了flash课件对相关的知识进行了动画演示,课件贯穿了整个课堂。上课伊始,我对圆柱的底面、侧面和高进行了课件演示,让学生清晰的感知各部分的名称和特征。让学生在开课的时候,就对本课产生一种兴趣。课中展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征,轻松的突破了难点,同时,在此基础上展示圆柱侧面展开后与展开前的关系,让学生一目了然,总之,在课堂教学中运用信息技术,能更好的完成教学目标,达到更好的教学效果。
课程标准中指出:既要关注学生的学习结果,又要关注学生的学习过程,更要关注他们在活动过程中所表现出来的情感与态度。本课以学生已有的生活经验为基础,让学生通过想象、描述、合作交流,从实物观察、到动手操作等多种方式来认识圆柱,并运用多媒体课件,及时有效的分散了难点,突破了重点,让学生在轻松愉悦的气氛中,扎实的掌握了所学的知识,突出“做数学”这个数学理念。也使学生在合作中共同进步,体验成功。
六年级数学圆柱教案(通用22篇)篇九
人教义教版教材第10~12页的内容,及相关练习题。
(1)知识与技能:初步认识圆柱,了解圆柱的各部分名称,掌握圆柱的特征,能看懂圆柱的平面图,认识圆柱侧面的展开图。
(2)过程与方法:通过操作、观察、比较、探索,培养学生的分析、推理、判断能力,培养学生的空间观念和动手能力。
(3)情感与态度:体验圆柱与日常生活密切联系,通过同学间合作交流、动手操作等活动,让学生在合作中共同进步,体验成功。
理解并掌握圆柱的特征。
弄清圆柱侧面沿高展开得到一个长方形,明确这个长方形的长和宽与圆柱的关系。 。
教具准备:圆柱体的实物模型。
学具准备:用硬纸做的圆柱、剪刀、小刀、圆柱实物等。
(请学生拿出纸试验,并到前面展示。)。
1、引出课题:教师指出:像这样(指卷成筒形的)形状的物体在数学上称为圆柱。圆柱有什么特征呢?这节课我们一起来研究这个问题。板书:圆柱的认识。
2、展示课堂学习目标。
(一)整体感知圆柱。
(二)认识圆柱各部分的名称。
(三)认识并掌握圆柱的特征。
(四)认识圆柱的侧面展开图。
(五)巩固圆柱的特征。
(一)、说一说,建立圆柱表象。(自学课本10页)。
师:请同学们想一想,在我们生活中那些物体的形状是圆柱形的?
在日常生活中,人们把许多建筑或物体设计成圆柱形,增加立体感、美感。如……这些物体的外形都是圆柱形。
(二)、摸一摸,看一看,认识圆柱的各部分的名称。
1、小组合作,解决问题。
师:请各组组长拿出准备好的圆柱,摸一摸,看一看,共同讨论完成以下问题。
(1)圆柱上下两个面是什么形状的?
(3)圆柱一共有几个面?分别是那几个面?
(4)圆柱有高有低。圆柱的高矮与什么有关?我们把它叫做什么?
2、小组内交流学习,小组长整理准备汇报。
3、反馈小组合作学习成果。
4小结:圆柱各部分的名称。底面、侧面和高。
预设答案:
生1:圆柱上下两个面是平面,分别是圆。
师:将上下两个面叫做圆柱的底面。(板书:底面)。
生2:圆柱周围的面是一个曲面。
师:圆柱周围的曲面叫做侧面。(板书:侧面)。
生3:圆柱共有3个面,分别是底面、底面、侧面。
师:各小组在圆柱模型中标出底面和侧面。
预设答案:
生1:圆柱两底面之间的距离。
生2:圆柱的高。(板书:高)。
师:圆柱两底面之间的距离叫做圆柱的高。高有时也称长、厚、深。
(三)认识并掌握圆柱的特征。
1、小组合作学习,感知圆柱上、下两个底面的关系。
师:请同学们想一想,圆柱3个面中那两个面大小相等?用什么方法可以证明?学生可以先观察、猜测、议论,并说出自己的做法。
预设答案:
生1:量出两个底面的直径或半径比较大小。
生2:用一个底面画出圆,用另一个底面按上去进行比较。
生3:……。
师:同学们的办法真好。圆柱的底面的确是两个完全相同的圆。(板书:两个完全相同的圆)不仅如此,今天我们研究的圆柱都是从上到下粗细均匀的直圆柱。
2、标指圆柱的高。
圆柱的高在哪里?有几条?(小组合作学习)(板书:高无数条)。
3、小结:圆柱的特征:(1)圆柱的底面都是圆,并且大小一样。(2)圆柱的侧面是一个曲面;(3)圆柱的高有无数条。
《练一练》。
同步练习:p4第一、二题。
(四)、剪一剪,认识圆柱的侧面展开图。
1、讨论研究圆柱侧面展开图。
师:猜一猜:如果把圆柱侧面剪开再展开,它会是什么形状?
(1)、小组合作学习并完成学习记录单。(表一)。
如何剪。
展开后是什么图形。
(2)、反馈学习成果。
2、讨论研究侧面展开图—长方形与原圆柱的关系。
长方形。
长
宽
圆柱。
小结得出:长方形的长等于圆柱的底面周长,宽等于圆柱的高。
3、讨论研究侧面展开图—正方形与原圆柱的关系。
师:当长方形的长和宽相等时,会是什么图形?
所以当圆柱的底面周长与高相等时,侧面展开图是什么形状?
4、小结:通过刚才的研究和讨论,我们知道了圆柱侧面展开图可以是一个长方形或者正方形,还可以是平行四边形,或者是一个不规则图形。
(五)、画一画,巩固圆柱的特征。
(1)、观察圆柱。
师:圆柱的底面是圆形的,但我们逐渐移动底面,看到了什么形状?
预设答案:
生:扁圆形。
师:这主要是因为我们视线的关系,根据美术上的透视原理,圆柱的两个底面画在平面上,都画成扁圆形,我们一起来画圆柱。
(2)、画圆柱并标出圆柱各部分的名称。。
教师示范(板书),学生练习画圆柱。画好以后,标出圆柱各部分的名称。
同步p41、2、3。
师:这节课我们学习什么?知道了什么?了解了什么?
底面 是完全相同的两个圆。
侧面 是一个曲面。
高 无数条。
长方形(正方形)。
侧面展开:平行四边形。
不规则图形。
六年级数学圆柱教案(通用22篇)篇十
本节课中,学生不仅掌握了圆柱的特征,而且观察、比较、分析、归纳等能力也得到了培养。反思教学过程,我体会如下:
思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜圆柱的侧面展开会是什么图形,通过猜测再进行验证,认识到长方形与圆柱侧面积之间的关系。在练习阶段,我设计了针对性练习和发展性练习,在形式,难度,灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。
在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。
六年级数学圆柱教案(通用22篇)篇十一
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学圆柱教案(通用22篇)篇十二
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题。
1、什么是体积?(物体所占空间的大小叫做物体的体积。)。
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题。
(启发学生思考。)。
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)。
(2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方。
体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:v=sh。
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,
这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么?四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?五:课后作业:
教材第9页,练一练第1、3、4、题。
六年级数学圆柱教案(通用22篇)篇十三
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
六年级数学圆柱教案(通用22篇)篇十四
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
单元重点:圆柱体体积的计算。
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知r或d求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()。
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的'差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)。
课时安排:1、圆柱的认识31页至33页及例1。
3、圆柱的体积公式的推导36页例4及补充一道已知r求v的例题。
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10。
6、圆锥的认识41页。
7、圆锥的体积公式的推导42页至43页例1。
8、圆锥体积的应用43页例2。
六年级数学圆柱教案(通用22篇)篇十五
(一)教材简析。
我执教的内容是义务教育课程规范实验教科书小学数学第二单元《圆柱》的第二课时。
本单元教学内容要求同学在认识圆柱的基础上,会求圆柱的侧面积和外表积,会应用圆柱的侧面积和外表积公式解决实际问题。本节课的重点是要求同学掌握圆柱体的侧面积、外表积的计算方法。学好这局部内容,可以进一步发展同学的空间观念,培养同学的空间想象能力、概括思维能力、分析综合等数学能力,为以后学习其它几何形体打下坚实的基础。
(二)学情简析。
这局部内容是在同学掌握长方形面积、圆的面积计算方法的基础上布置的,因而要以这些知识为基础,运用迁移规律使圆柱体的侧面积、外表积的计算方法这一新知识纳入同学原有的认知结构之中。而且六年级的同学,已经具备一定的独立思维、探究能力。针对这一现状,我遵循“同学是学习的主人”这一原则,努力创设情境,让同学动手操作、观察发现,鼓励同学积极、主动地获取新知,促进知识的迁移,通过同学自身的“再发明”,轻松地获取圆柱侧面积的计算方法,从而突破教学重点,充沛体现“同学是知识的发现者”这一理念。
二、说理念。
新课程倡议让同学动手实践、自主探索与合作交流的学习方式,把操作看成是培养同学创新思维的源头活水,是实现课程理念的'重要途径。在本节课中,我创设利于同学探究的活动,充沛调动同学的手、眼、口、脑,放开同学的思维,让同学亲自去实践,动脑去想,发现问题,解决问题。在探究活动中,完成探究、发现和应用的过程。
三、说教学目标。
1、知识目标:在探究活动中,使同学理解和掌握圆柱体侧面积和外表积的计算方法,能正确计算圆柱的侧面积和外表积。
2、能力目标:培养同学观察、操作、概括的能力,以和利用知识合理灵活地分析、解决实际问题的能力。
3、情感目标:培养同学初步的逻辑思维能力和空间观念,向同学渗透事物间的相互联系和相互转化的观点。
4、教学重点:能应用圆柱体侧面积、外表积的计算方法解决实际问题。
5、教学难点:探究圆柱体侧面积、外表积的计算方法。
四、说教法与学法。
根据本节课知识特点以和同学的认知规律,我采用直观演示、动手操作、引导发现等方法,充沛发挥同学的主体作用,引导同学在操作中观察、发现、概括,尝试总结出圆柱体的侧面积、外表积的计算方法。
练习设计遵循了由易到难、循序渐进的原则,采用了填空、选择、解决问题等形式,使同学在交流、合作中,内化知识、训练思维、培养能力、形成技能,感受数学的魅力。
五、教学程序设计。
为了充沛体现教师的主导和同学的主体作用,能让同学积极主动、生动活泼地参与到教学过程中来,我以遵循同学的认知规律,组织合理有效的教学程序为原则,以动手操作为切入点设计了以下四个教学环节。
(一)变魔术,激趣导入。
平面的面积同学已经会求了,而圆柱的侧面是个“曲面”,怎么样才干求出这个“曲面”的面积就成了圆柱外表积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
上课伊始,我发给每个同学一张完全一样的长方形的纸和两个完全一样的圆形(这两个圆形与用长方形纸卷成的圆柱体的侧面正好可以组成一个圆柱体)。让同学采用实验法,随意卷一卷、分一分,把一张长方形的纸变成一个圆柱形的纸筒。同学带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
(二)动手操作,探求新知。
1、动手操作,自主发现。
然后,我直接抛出问题:那么,这个圆柱的侧面的面积你能求吗?
在同学自主探究以后,我点拨同学发现长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。
这样抓住新旧知识内在联系,布置同学动手操作,引导同学在发现问题后和时动脑考虑,不只激发同学兴趣,同时也促进了同学思维能力的发展。
2、尝试探究,引导发现。
然后小结:他摸过的所有这些面的面积的和就是这个圆柱体的外表积。
接下来我请同学以同桌为单位,想方法求出这个圆柱体的外表积。
在同学活动的过程中,我巡视、指导,协助有困难的同学。
在本环节中,在同学的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在同学的亲历探究实践中得到了突破。
3、和时巩固,内化知识。
在教学重点基本突破后,我联系生活实际投影出示例4的厨师帽,让同学认真审题,并说厨师帽有几个面,再计算出用了多少面料,同学计算完后,要求得数保存整十平方厘米。启发同学看书发现新问题,讨论计算使用资料取近似值时,要用“四舍五入”法还是用“进一法”。从而使同学理解“进一法”的意义。这样充沛发挥了同学的主体作用,也培养了同学独立考虑能力和初步的逻辑思维能力。
(三)尝试应用,解决问题。
这一环节是内化知识、训练思维、培养能力、形成技能的重要环节,因而我设计了多样的练习题。这些练习题注重了基本训练,又注重了能力训练,在形式上注意新颖、多样,在内容上注意采取循序渐进的原则,由易到难,这样既符合儿童的认知特点,又能兼顾大多数同学。
(四)总结提升,思维延伸。
在课堂小结后,我提出“大家想一想,还有什么方法能求出计算圆柱体的外表积?”让同学充沛考虑、继续动手操作,将同学的思维向广度、深度延伸。例如,可以把圆柱切开,拼成近似的长方体,由长方体的外表积计算公式推导出圆柱的外表积计算公式;还有的同学可能会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的外表积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。
这不只让同学知道了解决问题的方法是多种的,还使同学亲自参与了对新知的探索,使知识掌握得更加牢固,并对旧知进行再发明并萌发了创新意识,培养了同学的创新思维和创新能力。也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。将课堂的尾声又推向一个新的高潮。
六、说教学手段。
本节课,我充沛运用动手操作、观察、比较等手段,使同学明确圆柱侧面积与长方形面积之间的关系。自身探究出求圆柱侧面积、外表积的方法。
七、说板书、板绘的设计。
板书采用了图示式的设计,直观展示本节课的知识点,与旧知的关系也表示得清晰、明了。有利于同学系统、清晰地掌握本节课的知识体系。同时圆柱的侧面积和外表积的计算方法都用红色显示,更加突出了本课重点,体现了板书的记忆理解功能。
八、说预设效果:
概括的说,本节课的教学过程设计,我力求体现以下几点:
一是注重数学学习与实际生活的联系,本节课的教学从引入到过程的操作,我都注意引导同学用数学的眼光去观察认识身边的各种事物,体验到数学来源于生活,对研究数学发生比较浓厚的兴趣。
二是强调数学学习的探索性、实践性。教学的引入,到教学过程的实践,乃至本节课的结尾始终都是同学在探究的过程。我力求在探究活动中增强数学内容的开放性,注重同学的情感体验和个性发展,强调同学学习数学的过程。
三是注重师生交流、生生交流。做到让同学多考虑、多动手、多实践,自主探究、合作学习、师生一起活动相结合,尽可能提高同学思维的参与程度,最大限度地拓宽同学的思维,使课堂充溢生机与活力。
六年级数学圆柱教案(通用22篇)篇十六
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
(一)学情分析。
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。
教师活动:创设情境协作指导拓展延伸。
学生活动:操作感悟自主探究实践应用。
具体为三个环节进行教学:
1.直观演示,操作发现。
让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
具体教学程序:
(2)你能想办法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。
(二)、新课教学:
设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。
根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1)引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(三)巩固练习,检验目标。
1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。
2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3.变式练习:已知圆柱的体积、底面积,求圆柱的高。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。
4.动手实践:让学生测量自带的圆柱体。
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(四)总结全课,深化教学目标。
结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。
本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。
六年级数学圆柱教案(通用22篇)篇十七
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;。
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
理解圆柱体积计算公式的推导过程。
圆柱体积演示教具。
一、旧知铺垫。
1、谈话引入。
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)。
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)。
二、自主探究,解决问题。
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)。
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
用字母表示:(板书:v=sh)。
三、巩固新知。
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成“试一试”
3、“跳一跳”:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸。
五、布置作业。
练一练1-5题。
六年级数学圆柱教案(通用22篇)篇十八
1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
理解圆柱体积计算公式的推导过程。
一、复述回顾,导入新课。
以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)。
1、说一说:(1)什么叫体积?常用的体积单位有哪些?
(2)长方体、正方体的体积怎样计算?如何用字母表示?
长方体、正方体的体积=×()用字母表示()。
2、求下面各圆的面积(只说出解题思路,不计算。)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
(二)揭示课题。
你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)。
二、设问导读。
请仔细阅读课本第8—9页的内容,完成下面问题。
(一)以小组合作完成1、2题。
(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母v代表圆柱的体积,s代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()。
[汇报交流,教师用教具演示讲解2题]。
(二)独立完成3、4题。
先求底面积,列式计算()。
再求体积,列式计算()。
综合算式()。
4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)。
【要求:完成之后以小组互查,有争议之处四人大组讨论。】。
教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。
三、自我检测。
1、课本9页试一试。
2、课本9页练一练1题(只列式,不计算)。
【要求:完成后小组互查,教师评价】。
四、巩固练习。
课本练一练的2、3、4题。
【要求:组长先给组员讲解题思路,然后小组内共同完成】。
教师进行错例分析。
五、拓展练习。
1、课本练一练的5题。
【要求:先组内讨论确定解题思路,再完成】。
六、课堂总结,布置作业。
1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。
2、作业:课本练一练6题。
六年级数学圆柱教案(通用22篇)篇十九
圆柱的认识是人教版九年义务教育六年制教材《数学》第十二册的教学内容。圆柱是人们在生产、生活中经常遇到的几何形体,认识圆柱有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。在学习本节内容之前,学生对于认识立体图形已经有了方法上的基础。基于此,我以实物为探究素材,通过三个层面的活动来组织教学。
一、利用实物初步认识感知圆柱特征。
师:让学生说说生活中哪些物体的形状是圆柱体?
生1:水管、日光灯。
生2:茶叶罐。
生3:铅笔。
生4:应该是没有削过的铅笔。
……。
请大家拿起圆柱形的物品,先仔细看一看、摸一摸、滚一滚,然后告诉大家,你发现了什么?(学生操作,并把自己发现的在小组里交流。)。
学生回答:1、上、下两个面都是圆形的。
2、它的侧面是一个曲面。
3、从上到下都一样粗。
圆柱在生活中是比较常见的物体,因此学生很容易找到圆柱形的实物,我组织学生通过观察手中的圆柱形状的实物,初步感知圆柱的特征。学生活动的方式主要是观察和触摸,其活动是浅层次的,通过看一看、摸一摸、滚一滚、画一画等方法让学生对圆柱形物品的特征产生感性认识,建立初步的表象,同时也激发了学生的学习兴趣。
二、制作圆柱,深入了解圆柱特征。
为了让学生更深入地了解圆柱的特征,在学生初步感知之后,让学生仿照手中的实物制作圆柱。
师:请同学们仿照所带实物的形状,分小组制作出一个圆柱体。
学生操作,师课间巡视,参与合作。
生展示自己的合作成果,并汇报制作过程。
生1:我们组拿一张长方形硬纸围着茶叶罐绕一圈,像是给它“穿衣服”似的,剪去多余的,粘好做成侧面。再将茶叶罐的底面画下并剪下来,做成圆柱的底面。
生2:我们组是先用一张长方形纸做圆柱的侧面,再将这个卷好的直筒竖在硬纸上,沿着圆曲线画圆,剪下来粘上就可以了。
生3:可以量一量长方形的长,计算出圆柱的底面半径。(该组学生事先预习发现的)。
《数学课程标准》认为:“有效的数学学习活动不能单独地依赖模仿与记忆,应通过学生亲自动手实践,自主探索与合作交流是学习数学的重要方式。在这一步骤中,充分给予学生一定的空间,让学生主动探索。由于学生向来喜欢手工制作,因而这一环节大家都兴趣盎然,在组长的带领下分工合作,体验到操作的乐趣。并且在活动中积极动脑思考,找寻合适的方法。
生1:圆柱的上下两个底面大小一样。
生2:圆柱的底面是完全相同的两个圆。
生3:圆柱的侧面展开后是长方形。
生4:长方形的长就是圆的的周长。
生5:长方形的宽就是圆柱的高。
师:圆柱的侧面展开后除了可以是长方形之外,还可以是什么图形?
生:还可以是平行四边形,不信你斜着剪试试。
生:还可以是正方形。
教师鼓励学生自己试着剪。
这些较难解决的重点和难点在学生自己探索的过程中迎刃而解了,“我看见了,但可能忘掉;我听到了,就可能记住了;我做过了,便真正理解了。”让学生亲自动手做圆柱体,议一议,说一说,让他们用自己的眼睛去观察,用自己的耳朵去倾听,用自己的双手去操作,用自己的头脑去思考,实现知识的“再创造”。在本环节中以“活动”为基础,组织学生“经历”了一个探索圆柱特征的过程,是在一个让学生“经历”、让学生“体验”、让学生“探索”的思想指导下完成的。从整个学习过程来看,使学生对圆柱的特征从不完整、表面的认识向较深层次的理解、整体上的把握发展,达到了事半功倍的教学效果。
三、解决实例巩固应用圆柱特征。
让学生运用己有知识去解决“水桶、水杯、油桶”为什么要制成圆柱形?
生1:我明白了,油桶是圆柱形,移动时不会破裂。
生2:水杯如果不是圆柱,喝水时它的棱角会弄伤口腔,而且水还会往两边流。
生3:油桶制成圆柱体,是因为圆柱的侧面是曲面利于滚动,底面盖子是圆的,易于拧紧。
师:有一张长方形的硬纸,长6.28分米宽3.14分米,将它做成一个圆柱的侧面,这个圆柱的底面半径可能是多少?请你帮忙算一算。
生1:可以将长作为底面周长,6.28÷3.14÷2=1(分米)。
生2:可以将宽作为底面周长,3.14÷3.14÷2=0.5(分米)。
这一环节体现了数学只有回归生活,才会显示其实用价值的原则,通过具体实例让学生把学到的知识灵活运用于实践之中。
本节课中课堂始终以“做数学”作为师生互动的基础和纽带。数学学习应成为学生经历一个真正的“再发现”和“再创造”的过程,体验“做数学”。在这节课认识圆柱特征安排三个层次:第一层次是认识生活中常见的圆柱体实物,通过观察、触摸得出圆柱的初步特征及了解圆柱的几个面。第二层次在初步认识圆柱的特征之后,自己尝试制作圆柱。因为学生对制作非常感兴趣,这一过程深受学生喜爱,在初尝成果的同时不知不觉地掌握了圆柱的特征。这比单纯地直接由教师讲解示范,学生的体验深刻得多。第三层次是让学生利用刚刚所学知识解决实际问题。在教学中先让学生动手尝试,学生有了成功制作圆柱的情感体验,使课堂变得富有生机和充满活力,使得接下来的学习充满了挑战性。学生在亲自参与的思维和操作活动中,经历了一个实践和创新的过程,枯燥的学习变得生动有趣。
以活动为学习主线,以操作为本节课主要形式,以学生亲身体会知识,自主实践获得经验是本堂课的特点,教师努力营造了一个让学生自己发现问题、分析问题、解决问题的良好氛围,学生始终成了学习的主人,而教师真正把学习的时间、空间还给学生,让学生拥有自己探索的机会。
六年级数学圆柱教案(通用22篇)篇二十
本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
圆柱、圆锥体积的计算公式的推导。
7课时。
六年级数学圆柱教案(通用22篇)篇二十一
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1) 出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1) 学生独立完成;
(2) 同桌互查;
(3) 学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
最佳设计方案。
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
六年级数学圆柱教案(通用22篇)篇二十二
优点:
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
不足:
再教设想:
在课的.设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。
将本文的word文档下载到电脑,方便收藏和打印。