教学目标是指教师通过课堂教学活动所引导学生掌握的知识、技能和情感态度等方面的要求。下面是一些优秀的六年级教案案例,希望能对大家的备课有所启发。
六年级数学教案比的化简(精选14篇)篇一
已学了比、求比值、化简比按比例分配等知识。
学习目标。
1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。
导学策略。
练习。
教学准备。
习题。
教师活动。
学生活动。
一、复习概念。
什么叫做比?
怎样求比值与化简比?
求比值与化简比有什么联系与区别?
二、独立练习。
第1题练习后说一说自己的'方法。
第2题巩固化简比的方法。
第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。
第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。
三、你知道吗?
学生自学,然后教师介绍黄金分割。
口答并结合练习加以说明。
列表分析。
教学反思。
还可以。
六年级数学教案比的化简(精选14篇)篇二
单元教学目标:
1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。
2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。
单元教材分析:
这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:
1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
2、注重引导学生利用比的意义解决实际问题。
教学课时:12课时。
内容。
课时数。
生活中的比。
比的应用。
练习三。
机动。
六年级数学教案比的化简(精选14篇)篇三
1.能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
2.引导学生通过实际操作、画图、计算等方法探索新知。
3.在解决问题的过程中体会比与现实生活的密切联系。
4.在交流算法的过程中体会解决问题策略的`多样性。
六年级数学教案比的化简(精选14篇)篇四
教学要求:
1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。
2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。
教学过程:
一、揭示课题。
1、口算(指名口算课本第64页第11题)。
2、引入新课。
我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。
二、复习约数和倍数。
1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?
当a能被b整除,也就是b整除a时,还可以怎样说?板书:
约数。
倍数。
2、做“练一练”第1题。
学生做在课本上,说明倍数和约数的依存关系。
3、学生练习。
(1)从小到大写出9的五个倍数。
复习约数倍数相关知识(略)。
(2)写出18的所有约数。
三、复习质数合数。
1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:
板书:1。
质数。
合数。
怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。
2、口答:
(1)说出比10小的质数和合数。
(2)最小的质数和最小的合数各是几?
(3)下面哪些是质数?哪些是合数?
785123579190。
3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。
4、做“练一练”第3题。
练后指名口答,集体订正。
四、复习公约数和公倍数。
1、学生练习。
(1)写出18和24所有的公约数,指出公约数。
(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。
学生口答,老师板书。
提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?
(板书——公约数、公约数——公倍数——最小公倍数)。
2、“练一练”第4题。
集体练习,指名口答,说一说方法怎样归纳三种关系?
追问:用短除法求公约数和最小公倍数有什么相同和不同?
五、复习。
能被2、5、3整除各有什么特征。
1、提问:能被2、5、3整除各有什么特征。
(板书:——能被2、5、3整除的数)。
2、“练一练”第5题。
提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,
板书:偶数。
奇数。
想一想,自然数可以分为哪几类?
六、课堂小结。
根据板书内容,说说相互之间有什么联系。
七、课堂练习。
1、练习十一和12题。
2、课堂作业。
(练习十一第15、16题、17题中(3)(4)。
八、课外作业:练习十一第18题。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学教案比的化简(精选14篇)篇五
知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。
情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。
教学重难点重点:会运用商不变的性质或分数的基本性质化简比。
难点:运用比的化简解决生活中的一些实际问题。
教学过程。
一、复习铺垫,揭示课题。
1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?
2.比与除法、分数有什么关系?
3.这节课我们继续学习关于比的知识(板书课题——比的化简)。
4.看了这个课题,你想知道些什么?
二、创设情境,探究新知。
1.体会化简比的必要性。
师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?
根据学生回答,课件出示相应的数据信息:
蜂蜜水。
号杯:3小杯12小杯。
号杯:4小杯16小杯。
师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?
预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。
生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。
教师适时引导学生找出蜂蜜与水之间的比,并板书:
1号杯:3:12。
2号杯:4:16。
师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。
师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:
1号杯:3:12=3/12=1/4=1:4。
2号杯:4:16=4/16=1/4=1:4。
师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)。
2.理解化简比。
师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。
(1)学生独立思考,试着写一写,并同桌交流自己的发现。
(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。
3.归纳比的基本性质。
师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)。
4.揭示“最简整数比”。
师:分数约分要注意什么?比的化简又要注意什么?
分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。
5.化简比的方法。
师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)。
化简下面的比:
24:42120:60。
1)独立尝试。(指明两人板演)。
交流:说说你的思路。(方法、根据)。
2)小组活动:(课件出示)。
化简下面的比:
0.7:0.82/5:1/4。
思考:这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)。
3)归纳:怎样化简比?
小组讨论、全班交流。
4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。
三、巩固应用,解决问题。
1.化简比:(带的为选做)。
(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)。
21:240.3:1.54/5:5/7。
1:4/50.12:60.4:1/4。
2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。
3.教材第73页“练一练”第4题。
(1)学生独立完成(1)、(2)两题,集体订正。
(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。
四、全课总结。
师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
六年级数学教案比的化简(精选14篇)篇六
教学目标:
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:能正确、熟练地解答按比例分配的实际问题。
教学过程:
一、课前组织复习旧知。
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)。
学生自由发言,预设推断如下:
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的,女生是全班的。
3、以男生为单位“1”,女生是男生的,全班是男生的。
4、以女生为单位“1”,男生是女生的,全班是女生的。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)。
二、探索方法,建立模型。
1.理解题意。
(1)什么是稀释液?怎样配置的?
(2)什么是按比例分配?
2.自主探究,合作学习。
自学数学书p49例题2,思考:
(1)你从例题2中得哪些信息?
(2)1:4表示什么?你从中得到哪些信息?
(3)你能用画图的方法给同位讲解吗?
(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?
3.小组展讲。
小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。
三、巩固练习。
2.填空。
3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?
4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?
六年级数学教案比的化简(精选14篇)篇七
1、在具体情景中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。
2、能解决有关增加百分之几或减少百分之几的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
【教学重点】。
理解增加百分之几或减少百分之几的意义,能解决有关增加百分之几或减少百分之几的实际问题。
【教具准备】。
多媒体课件。
【学具准备】。
【教学设计】。
教学过程教学过程说明。
一、准备。
线段图是把握数量关系的重要方法之一。
你能用线段图表示下面的数量关系吗?
1.学生独立完成线段图。
2.展示学生成果。
3、教师对学生的作品进行评价。
25%=1/432人。
围棋班比围棋班25%。
航模班。
1、出示教科书p23上面的问题。
2、思考:增产百分之几是什么意思?
※学生自由发表自己的见解。
※教师评价。
杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几。
3、学生独立解答问题。
4、班内交流。
方法一:7-5.6=1.4(吨)。
1.45.6。
=0.25。
=25%。
方法二:75.6。
=1.25。
=125%。
125%-100%=25%。
三、试一试。
1、出示教科书p23下面的问题。
2、几成是什么意思?
※成数主要用于农业收成。
※几成就是十分之几。
※一成就是1/10,也就是10%。
二成五就是2.5%,也就是25%。
3、学生独立解决问题。
※(2.61-2.25)2.25。
=0.362.25。
=0.16。
=16%。
四、练一练。
1.教科书p24练一练第1题。
2.科书p24练一练第2题。
3.教科书p24练一练第3题。
五、课堂总结。
通过今天的学习你有什么收获?
从复习中引导学生分析数量关系。
通过介绍某实验田普通水稻与杂交的产量,引出增产百分之几的实际问题。
引导学生分析数量关系,再一次体会百分数的意义。
引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
重点理解几成的意思。让学生独立完成再交流,发展学生的思维。
六年级数学教案比的化简(精选14篇)篇八
教学目标:
1.知识目标:
使学生进一步掌握分数乘法的计算方法,能正确解决分数连乘的简单实际问题,拓展分数乘法意义的理解。
2.能力目标:
使学生经历解决问题的探索过程,进一步培养观察、比较、分析的能力。
3.情感目标:
感受数学知识和方法的应用价值。
教学重点:
能正确计算分数连乘的计算。
教学难点:
能用分数连乘的方法解决实际问题。
教学准备:
教学光盘。
第五课时
教学过程:
一、复习引入
1.下面每个条件分别是以谁为单位“1”的。
23
a是b的3b是c的5
口答,说说可以列成什么数量关系?
2.今天我们继续学习有关分数乘法新的内容。
板书课题:分数连乘。
二、教学新课
1.教学例6。
(1)理解题意。
83
二班做的朵数和谁有关?
(2)画图分析。
画一条线段表示一班所做绸花的朵数。
可以怎样表示二班做的绸花朵数?
怎样表示三班做的绸花朵数呢?
(3)讨论方法。
要去三班做了多少朵,要先算什么呢?怎样算?
讨论交流,汇报方法。
2.完成练一练。
独立完成计算,展示作业。
说说计算时要注意什么?
三、巩固练习
1.完成练习九第6题。
独立完成,集体核对。
2.完成第7题。
3.完成第8、9题。
理解题意,弄清解决每一个问题时要先算什么,再算什么?
列式解答。
四、课堂小结
今天学习了什么内容?你对自己的表现满意吗?
六年级数学教案比的化简(精选14篇)篇九
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
六年级数学教案比的化简(精选14篇)篇十
2.使学生能利用正、反比例的意义正确解答应用题.。
3.培养学生的判断推理能力和分析能力.。
教学重点。
教学难点。
利用正反比例的意义正确列出等式.。
教学过程。
一、复习准备.(课件演示:比例的应用)。
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.。
2.路程一定,速度和时间.。
3.单价一定,总价和数量.。
4.每小时耕地的'公顷数一定,耕地的总公顷数和时间.。
5.全校学生做操,每行站的人数和站的行数.。
(二)引入新课。
教师板书:比例的应用。
二、新授教学.。
(一)教学例1(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
14025。
=705。
=350(千米)。
2.利用比例的知识解答.。
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例。
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长千米.。
答:两地之间的公路长350千米.。
3.怎样检验这道题做得是否正确?
4.变式练习。
(二)教学例2(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)。
3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?
六年级数学教案比的化简(精选14篇)篇十一
3、导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
1、教学例3比的基本性质。
(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?
2、教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18(2)(3)1、8:0、09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。
六年级数学教案比的化简(精选14篇)篇十二
本单元的内容主要包括百分数的意义和读写法,百分数和分数、小数的互化以及用百分数解决问题。
百分数在生活中有着广泛的应用,人们常用百分数对事物进行描述、分析、统计、比较。虽然学生在日常生活中已经大量接触了百分数,但是对百分数的意义以及其应用价值的认识还处于模糊阶段。本单元在学生学习了整数、分数、小数相关知识的基础上,正式认识百分数。百分数表示的是一个数是另一个数的百分之几的数,因此,它是一种特殊的分数,有关百分数的计算与应用都可以由分数的相关知识迁移过来。由于百分数与实际生活联系紧密,学习百分数对理解和判断生活中相关数据信息以及运用百分数解决日常生活中的实际问题有着重要的意义。
六年级上册主要教学百分数的意义及一般应用,六年级下册教学百分数的特殊应用(如利率、折扣、成数)。两部分内容的着眼点有所不同,六年级上册的教学重点是利用知识的迁移,认识百分数的意义及一般性应用;而六年级下册的教学重点是了解百分数在生活中一些特殊领域的应用,更强调对其实际意义的理解。
备课目标
知识与技能
过程与方法
情感、态度与价值观
1.理解百分数的意义,会正确读写百分数,会用百分数表述生活中的一些数学现象。
2.掌握小数、分数和百分数的互化方法。
3.在理解、分析数量关系的基础上,正确解决有关百分数的实际问题。
4.经历探究百分数意义的过程,积累探究问题的经验。
5.经历探究小数、分数和百分数互化方法的过程,体会转化、类比、迁移等数学思想方法。
6.经历用百分数解决问题的过程,学习解决问题的策略,提升解决问题的能力。
7.在探究百分数的意义的过程中,体会数学与生活的密切联系。
8.积极参与数学活动,激发好奇心和求知欲。
9.在运用数学知识和方法解决问题的过程中,认识数学的价值。
重点:
1.理解百分数的意义及掌握百分数与小数、分数之间的互化方法。
2.用百分数解决问题。
难点:
1.百分数和分数在意义上的区别。
2求比一个数多(或少)百分之几的数是多少。
六年级数学教案比的化简(精选14篇)篇十三
教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。
2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。
教学过程:
一、应用广角。
1、问:你在生活中发现过哪些数学问题吗?
你能运用所学的数学知识和方法解决这些问题吗?
2、完成第27题。
(1)课前预先布置学生按要求去调查。
(2)课上,让学生分组汇报调查得到的数据。
学生根据数据计算,完成填空。
(3)分析:从这些信息中,你们知道了什么?
用百分数或比表示相关的信息有什么好处?
3、完成第28题。
收集一些用百分数或比表示的信息,在小组里交流。
4、完成第29题。
根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。
全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。
5、完成第30题。
(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板。
读题,思考:剪去的`每个正方形的边长应该是几厘米?
(2)学生动手剪一剪、折一折。
找一找:这个纸盒的长、宽、高各是多少?
(3)算一算:
制作这个纸盒用了多少硬纸板?
这个纸盒的容积是多少立方厘米?
6、完成第31题。
学生先独立思考,再全班交流。
二、自我评价。
1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。
2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。
六年级数学教案比的化简(精选14篇)篇十四
倒数的认识、分数除法的意义与计算、解决问题。
通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则混合运算及解决相关实际问题的方法;另一方面也进一步加深了学生对乘除法关系的理解,体会数学知识方法的内在联系,为解决有关分数的实际问题提供更多的支持,同时也为后面学习比和比例、百分数打下坚实的基础。
本单元是在学生已经掌握了分数乘法、解方程等知识的基础上进行教学的。本单元的学习内容与下一单元比的相关知识联系紧密,将分数除法安排在比的前面进行学习,为更好地学习下一单元的内容奠定了知识基础。
知识与技能
过程与方法
1、理解倒数的意义,掌握求一个数的倒数的方法。
2、通过实例,使学生知道分数除法的意义与整数除法的意义相同。
3、理解并掌握分数除法的计算方法,明确算理。
4、会用算术方法及列方程解答分数除法问题。
5、能运用不完全归纳法总结出倒数的意义。
6、在教学分数除法的计算方法时,用折纸的方法推导计算结果,体现了数形结合思想;把除法计算转化成乘法计算,渗透了转化思想。
7、在探究倒数意义的过程中激发学生探究数学的兴趣,并能付诸行动。
8、体会数学知识之间的内在联系,促进学生整体思考能力的提升。
9、能积极参与数学活动,对数学有好奇心和求知欲。
10、体验获得成功的乐趣。
1、掌握求一个数的倒数的方法。
2、理解并掌握分数除法的意义、算理及计算方法,会用算术方法及列方程解答分数除法问题。
1、理解分数除法的算理。
2、运用分数除法的相关知识解决实际问题。