通过写心得体会,我们可以提升自己的思考能力和表达能力。接下来是一些精选的心得体会示范,希望能够激发大家的写作热情,提升自己的写作能力。
大数据时代的心得体会(专业18篇)篇一
近年来,随着数据技术和网络技术的飞速发展,我们正处于一个大数据信息化时代。随之而来的是海量数据的爆发式增长,对数据的审查、处理和分析带来了前所未有的挑战。大数据信息化时代的到来也改变了人们的生活方式和工作方式,促进了科技进步。在这个时代,我们不仅需要拥有海量的数据,更需要的是对数据的利用价值。因此,大数据信息化时代需要不断地关注数据的价值和意义,以更好地适应信息化时代的发展。
第二段:论述大数据在企业经济效益中的应用。
大数据为企业带来了经济效益,企业可以更好地收集和分析数据,发现并分析出自身经营情况的薄弱环节,及时采取措施,提升管理能力,有效降低成本。同时,大数据能够带来巨大的商业价值,为企业提供更加精准的服务。在这个信息化时代,企业需要关注大数据的价值,通过数据分析找到企业更好的发展之路。
第三段:阐述大数据在医疗行业中的应用。
大数据对于医疗行业来说也是非常重要的。通过收集和分析医疗领域的数据,医疗领域可以更好地预测疾病的发展和预防措施。同时,大数据还能够帮助医疗领域提高诊疗效率,减少医疗成本。医疗领域非常关注如何将现有的数据信息,转换为医疗罕见病的战斗力,科学家们希望能够通过大数据的助力,探索新的治疗方案,并更好地提供医疗服务。
第四段:说明大数据在教育领域的应用。
作为广博的知识体系,教育领域同样需要大数据的帮助。通过收集和分析学生的学习数据,教育领域可以更好地了解学生的学习情况,精准地预测学生未来的学习方向和职业发展。同时,教育领域也可以通过大数据获得学习资源的优化配置,提升学生的学习效果,推动区域教育更好地发展。
大数据信息化时代已经到来,数据是未来时代的核心竞争力。我们需要更加深入地理解大数据背后的价值和意义,结合实际应用,充分挖掘数据的潜在价值。只有这样,我们才能更好地抓住大数据带来的发展机遇,实现我们的个人和企业的发展目标。在未来,大数据的发展将会更加快速和广泛,我们需要不断地跟随时代发展,积极掌握新技术,抓住大数据时代带来的发展机遇。
大数据时代的心得体会(专业18篇)篇二
大数据在信息时代的崛起,给教育领域带来了前所未有的变革和机遇。随着技术的进步,教育数据的采集、分析和应用已经成为教育改革的新方向。在这个大数据教育新时代,我有了一些深刻的体会和感悟。
首先,大数据教育打破了传统教育的边界和束缚,为学习提供了更多个性化的可能。传统教育往往以“一刀切”的方式进行,忽略了每个学生的差异和潜力。而大数据技术可以对学生的学习情况进行实时跟踪和分析,根据学生的兴趣、能力和学习节奏,个性化地设计学习内容和方式。通过大数据教育,学生们可以在更适合自己的环境中学习,更有效地进步和成长。
其次,大数据教育强化了教育评估和质量管理的科学性和客观性。在过去,教育质量的评价往往依靠主观的感受和经验,缺乏客观的数据支持。而大数据教育则可以收集和分析大量的学生学习数据,从而更准确地评估学生的学习成果和教学效果。基于这些数据,教师和学校可以更迅速地发现问题和调整教学策略,以提高教学质量。同时,学生和家长也可以更明确地了解自己的学习情况,并及时调整学习计划。
第三,大数据教育为教育决策提供了更充分的依据和支持。教育决策往往需要依赖大量的数据来分析趋势和预测未来。传统的数据搜集和整理工作非常繁琐,也容易出现错误。而大数据教育则可以通过大规模数据的分析,深入挖掘学生的学习模式、教师的教学方法、课程的效果等多个维度,为教育决策提供更准确的依据。例如,在教育政策制定时,可以通过大数据来衡量教育改革的效果和潜在的影响,有针对性地进行调整和改进。
第四,大数据教育促进了合作和共享。在大数据时代,不同学校、不同区域和不同国家的教育数据可以进行共享和比对。这种共享和比对可以帮助教育者们更全面地了解教育现状和问题,同时也可以借鉴其他地区和国家的成功经验。大数据教育的共享和合作,可以在全球范围内实现教育资源的共享,促进教育的公平和可持续发展。
最后,大数据教育也带来了一些挑战和隐忧。首先,隐私和安全问题是大数据教育面临的重要挑战。大数据教育需要收集和处理大量的个人敏感信息,因此,如何保护学生和教师的隐私和数据安全势在必行。其次,大数据教育虽然可以提供大量的数据支持,但如何从这些海量的数据中提炼出真正有价值的信息,仍然是一个需要解决的难题。此外,大数据教育也需要教育者们具备相关的技术和数据分析能力,以更好地应对和利用大数据。
综上所述,大数据教育的出现给教育领域带来了革新和突破。它改变了传统教育模式,提供了更多个性化的学习机会;它强化了教育评估和质量管理的科学性和客观性;它为教育决策提供了更充分的依据和支持;同时也促进了教育的合作和共享。然而,大数据教育也面临着隐私和安全问题以及数据利用的挑战。我们应当积极探索和应用大数据教育,同时也需警惕其潜在的问题,努力营造一个以数据为基础的智慧教育新时代。
大数据时代的心得体会(专业18篇)篇三
大数据时代的到来,带来了数据的爆炸式增长和深度挖掘的机会。作为一位学生,我通过观看《大数据时代第一集》这部纪录片,对大数据时代有了更深入的了解与体会。在观看中,我不仅感受到大数据对于技术和商业的巨大影响,也对个人隐私与数据安全产生了更多的关注。大数据时代带来的机遇与挑战,都需要我们理解和应对。
《大数据时代第一集》中,纪录片展示了大数据挖掘在商业领域的巨大价值。通过收集和分析大量的用户数据,企业可以更好地了解消费者需求和行为习惯,进而精准定位和推广产品。例如,电子商务公司Alibaba利用大数据技术,将推荐给用户更符合其兴趣的商品,提高用户购买的准确率。这些商业实践证明了大数据时代对于商业模式的革新和商业价值的提升。
第二段:技术进步的推动。
大数据时代的发展离不开技术的进步,尤其是人工智能和机器学习的发展。纪录片中介绍了谷歌的“Go”人工智能系统战胜围棋世界冠军的案例,以及IBM的人工智能系统“沃森”能够击败“危险边缘”的案例。这些成果展示了人工智能在大数据时代中的巨大潜力和推动力。同时,大数据时代也对技术提出了更高的要求,如数据处理和存储能力的提升,数据安全和隐私保护的挑战等,需要技术人员进行不断的研发和创新。
第三段:数据隐私和安全的重要性。
在大数据时代,个人数据的收集、存储和分析变得越来越普遍。然而,个人数据的滥用和泄露问题也日益突出。纪录片中提到,一个小小的数据点,可能蕴含着个人的隐私和重要信息。因此,数据的安全和隐私保护变得至关重要。不仅是企业和组织需要采取相应措施,个人也需要对自己的数据有更多的保护意识。此外,政府和监管机构也应该制定相应的法规和政策,来保护个人的数据安全和隐私权。
第四段:数据伦理与责任。
大数据时代,数据的挖掘和应用对于社会带来巨大的影响。纪录片中提到,大数据分析可以应用于疾病预防、城市规划等领域,使社会更加智能和高效。然而,数据的应用也需要考虑数据伦理和责任问题。例如,数据的歧视性使用和不当利用可能会对个人和社会带来负面影响。因此,在大数据时代,我们需要思考如何在数据利用的同时,确保公平、公正和伦理的原则。
作为一个个体,我认识到在大数据时代里我将面临隐私泄露和数据滥用的风险。因此,我会在使用网络和社交媒体时更加小心,避免泄露个人隐私。同时,我也会更加关注数据伦理和责任的问题,尽量避免对他人数据的滥用和歧视性使用。另外,我也会在学习和工作中更加重视数据科学和技术的学习,以便更好地适应大数据时代的发展。
在大数据时代,我们需要认识到数据的重要性和价值,同时也需要关注数据安全、隐私保护、数据伦理和责任等问题。只有在全社会共同努力下,才能充分利用大数据的潜力,推动社会的发展和进步。
大数据时代的心得体会(专业18篇)篇四
未来的十年,将是大数据引领下的智慧科技时代。不管你是否意识到它的存在,大数据都将越来越快地改变我们这个时代,包括我们的生活方式。
维克托·迈尔-舍恩伯格是最早洞见大数据时代发展趋势的数据科学家之一。他通过一个大家熟知的事例,来帮助我们理解“大数据”的潜在影响力,那就是四个世纪之前望远镜和显微镜的发明。望远镜能够让我们感受宇宙,显微镜能够让我们观测微生物,它们都是收集海量数据的新工具,因为这种工具的发明,人们同步更新了分析数据的技术和方法,促进了人们对世界更好的理解。如果说望远镜和显微镜是测量领域中的一场革命,那么今天的数据测量就相当于是现代版的望远镜、显微镜。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富,以及更多的传感设备、移动终端接入到网络,由此产生的数据及数据的增长速度比历史上的任何时期都要多、都要快。一个大数据的时代,不经意间顺理成章地翩然而至。
一、什么是大数据?
大数据是当前最热门的话题之一。但什么是大数据,人们尚未给出确切的定义。首先,“大数据”是相对过去小的、局部性的数据而言的;其次,利用大数据进行分析和工作时,所依据的关于此事尽可能完整的数据,从而“一览众山小”,而不是采用局部的小数据,从局部推断整体。
维克托也并未直接给出大数据的定义。不过,他用三大转变描述了大数据的特性:
转变之一:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样。例如一项针对相扑比赛中非法操纵比赛结果的研究对64000场比赛进行了分析,这算不上一个很大的数字,但由于这是过去十年所有的比赛,所以它是大数据。
转变之二:由于有了更多的数据,我们可以接受更多的混杂、更多数据上的不精确。如果我们对于一个事物只有50个数据点,那么每一个数据点都必须非常精确,因为每个数据点都是有用的;但是如果我们有5000万个,去掉10个,甚至去掉1000个都没有太大的问题。
转变之三:不再探求难以捉摸的因果关系,转而关注事物的相关关系。分析大数据主要为了预测未来“是什么”,而不是“为什么”。因为很多时候我们以为我们找到了事情背后的原因,实际上却没有找到。更多时候知道了“是什么”就足够了。例如知道流感将会扩散到哪里就足够了,我不需要知道为什么;知道什么时候在网上购买机票能够获得最优惠的价格就足够了,我不需要知道为什么此时价格最低。
二、大数据带来的变化。
大数据从根本上改变我们认识世界和改变世界的方式。很多传统的习惯将被颠覆,很多旧的制度将面临挑战。举例来说:
第一,科学探究的思路和方式受到挑战。
探究是新课程改革中的一个热词,是促进学校教学与科学研究相融合的实践举措。科学探究的基本路径是:发现问题,提出假设,制定方案,实践探究,分析数据,得出结论。之所以会梳理出这样一个探究的路径,与我们对问题知晓的信息过少有关。换句话说,对所要研究的事物,我们知道的数据很少,需要从这些很小的数据出发,通过猜想和假设,进行试探性的研究,如果研究得出的结果和自己的假想是一致的,则说明我们的假说是正确的,这些假说会上升为对该事物描述的知识,我们掌握该事物的数据也随之增加。
利用测量所获得的点滴数据,从一个局部来推测世界是怎样的,这是科学探究的基本思路和方式。长期以来,我们总是通过这样的方式来认识世界,对其有宗教般的信仰。尽管我们知道,决策者总是先有了想法,才会提出假设。如果决策者自身对所研究的事情存在着偏见,所提出的假设就很难得到实证的支持,这往往会导致探究花费了很长的时间、很大的物力和财力,也常常劳而无功。但科学研究者还是坚定不移地沿着这条道路前行,学校在教学中也将其作为科学研究的基本规范来传授。
在大数据时代,这样的研究方式收到了极大的挑战。先举个事例来说吧。手机辐射是否能够致癌?关于这个问题,无论我们的假设如何,实验的设计都很难进行。首先,样本选择过少,没有统计学上的意义;其次,不能拿人做研究对象;第三,短时间的研究很难观察到变化。有了大数据之后,这样的难题就可以迎刃而解了。前段时间,丹麦就进行了这样的研究。丹麦拥有1985年手机推出以来所有手机用户的数据库。他们从这个数据库中分析了1990年至20xx年拥有手机的所用用户的数据,同时,他们还收集了这一期间医院收集的所有癌症患者的数据,然后分析手机用户是否比非手机用户有更高的癌症发病率。这两个数据库本身是完全独立的,在作分析之前从来没有想过可以做这样的研究。结果表明,使用移动用户和癌症风险增加之间不存在任何关系。20xx年10月,这一研究的结果发表在《英国医学杂志》上。
上述的案例告诉我们,在获得了大量的数据,能够对事物的整体进行全面的认识之后,假想就没有意义了,我们可以直接根据全面的数据做出结论。
大数据时代的心得体会(专业18篇)篇五
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力??可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
大数据时代的心得体会(专业18篇)篇六
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧---巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi最大的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。看完此书,我心中的一些问题:
1.什么是大数据?
查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity--这个好像是ibm的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2.大数据适合什么样的企业?
3.大数据带来的影响。
1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
大数据时代的心得体会(专业18篇)篇七
随着信息技术的快速发展,大数据教育正成为教育领域的新热点。在大数据背景下的教育,为教育提供了更全面、更准确的数据支持,同时也给教师和学生带来了更广阔的教学和学习空间。在实践的过程中,我深刻地体会到了大数据教育这一新时代的优势与挑战。下面我将从教学设计、学习评估、个性化教育、教育研究和信息安全五个方面,谈一谈自己对大数据教育的心得体会。
首先,大数据教育为教学设计提供了更有力的支持。传统教育往往根据教师的经验和直觉进行教学设计,难以做到针对每个学生的个性化需求。而有了大数据的介入,教师可以更准确地了解学生的学习情况和表现,从而有针对性地进行教学设计。例如,通过分析学生在课堂上的表现,教师可以了解到学生的薄弱环节,并据此调整教学内容和方法,帮助学生更好地掌握知识。此外,教师还可以通过数据分析来发现学生的学习兴趣和潜能,为学生提供个性化的学习资源和指导,提高教学效果。
其次,大数据教育改变了传统的学习评估方式。在传统教育中,评估往往依赖于考试和作业,对学生的全面能力评估有所欠缺。而大数据教育可以帮助实现全方位的学习评估。通过收集和分析学生的学习数据,可以对学生的学习进程、学习过程和学习结果进行实时监测和评估。例如,通过分析学生在学习过程中的行为数据和学习输出数据,可以了解到学生的学习态度、学习策略和学习效果,并及时进行反馈和调整。这种全方位的评估方式更能真实地反映学生的学习情况,有助于引导学生更好地提高学习效果。
第三,大数据教育推动了个性化教育的发展。大数据的应用使教育走出了一刀切的教学方式,实现了因材施教。通过分析学生的学习数据,可以获得学生的学习特点、习惯、喜好等信息,使教师能够更准确地把握学生的个性化需求,采用针对性更强的教学方法和手段。同时,学生也可以根据自身的需要和兴趣进行学习,选择适合自己的学习路径和资源。个性化教育以学生为中心,让每个学生都能在适合自己的学习环境中得到最大程度的发展,提高教育的质量和效果。
第四,大数据教育为教育研究提供了更多可能。教育研究一直致力于探索教育规律和提高教育效果,而大数据的应用为教育研究提供了更多的研究对象和研究方法。通过分析大数据,可以揭示学生学习行为、学习难点、学习效果等方面的规律,发现教育领域的问题和挑战,并为教育改革和教育政策提供参考和支持。此外,大数据还可以用于教师培训和教学团队建设,帮助教师和学校提高教学效果和管理水平。
最后,大数据教育也面临着信息安全的挑战。大数据的应用涉及到大量的个人隐私数据,保护学生和教师的个人隐私和信息安全成为一项重要任务。在大数据教育中,不仅需要加强对学生和教师的隐私保护,还需要建立健全的数据安全管理体系,加强数据权限控制和访问控制,保证数据的安全性和可靠性。
综上所述,大数据教育为教学设计、学习评估、个性化教育、教育研究和信息安全提供了新的可能和挑战。这一新时代的到来,使教育变得更加科学、智能和人性化。但同时也需要我们不断探索和创新,解决其中的问题和挑战,使大数据教育更好地发挥其优势,推动教育的深入发展。
大数据时代的心得体会(专业18篇)篇八
随着信息时代的不断发展,大数据变得越来越重要。作为普通人,我们可能不了解大数据的广泛应用,但它已经深入到我们生活的方方面面。从社交媒体、搜索引擎,到在线购物、医疗保健,这些服务都依赖于大数据的快速处理和分析。在大数据信息化时代,我们需要深入理解并把握其内在核心,以便真正发挥它的优势。
大数据的优势之一是能够快速的处理和分析海量数据。这意味着我们能够更准确地预测和判断某些数据趋势,在经营决策中更能快速高效地行动。与此同时,大数据也能够加速生产过程,使得我们在更短的时间内生产出更多更高质量的产品。通过真正深入理解大数据的优势,我们将能更加全面地运用它,使自己更具竞争力。
大数据存在很多挑战,其中最大的挑战之一是保护与保密性。大数据包含许多个人隐私信息,如果无法妥善处理,将会给用户带来极大的风险。与此同时,可靠和高效的数据存储、传输、处理和分析技术也是另一个重大挑战。理解这些挑战,将有助于我们更好的提高数据分析的质量和可靠性,同时避免数据泄漏和安全问题。
大数据信息化的应用是多种多样的。市场预测、广告投放、生产管理、医学研究等等领域都有众多大数据的应用案例。在市场领域,大数据已成为企业市场战略的基础,因为大数据能够分析市场需求,预测产品领域未来的趋势和消费者行为。在医学领域,利用大数据技术可以快速诊断疾病,预测和预防可能的医疗危机。不管在哪个领域,大数据信息化的应用都是前所未有的,其应用前景也是十分广阔。
第五段:结论。
总之,大数据信息化时代是我们不可避免的未来。这需要我们深入理解它的内在核心,同时也需要认真且客观的看待它所带来的优势和挑战。通过更好地利用大数据技术,我们将能够突破自己的思维和能力,迈向更广阔而更辉煌的未来。
大数据时代的心得体会(专业18篇)篇九
近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。
首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。
其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。
再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。
最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。
综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。
大数据时代的心得体会(专业18篇)篇十
《大数据时代》这本书写的很好,很值得一读,因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。下面是本站小编为大家收集整理的大数据时代。
总结,欢迎大家阅读。
利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。
一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱收集的数据应该免费提供给纳税人使用”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。
二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。
三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。
数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20xx年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20xx年也批复了“国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
大数据时代的心得体会(专业18篇)篇十一
随着信息技术的快速发展,大数据已经成为了当代社会最为炙手可热的话题之一。作为信息时代的产物,大数据给我们的生活带来了巨大的改变。最近,我读了一本名为《大数据》的书,在阅读过程中,让我对大数据有了更深的认识。下面我将与大家分享一下我的体会。
首先,大数据让我们的生活更加便利。现如今,大数据技术得到了广泛的应用,人们可以通过各种技术手段轻松地获取所需的信息。无论是购物、出行还是旅游,我们都能够通过大数据获取到最新的产品信息、路线规划以及景点推荐,从而为我们的生活提供了诸多便利。比如,每当我需要购买产品时,只需在电子商务平台上输入关键词,便可获得大量的搜索结果,同时还能通过查看其他用户的评价来进行筛选,这使得我们能够更加轻松地做出购买决策。
其次,大数据为商业发展提供了新的机遇。随着大数据技术的不断改进,越来越多的企业开始使用大数据分析手段来处理海量的数据,从而找到市场的空白点,为企业创造更多商机。例如,通过对大数据的分析,电商平台能够通过用户的购买行为了解用户的兴趣爱好,并根据这些数据进行精确的产品定位和个性化推荐,从而提高销售额。大数据的出现,使得商业发展更加精准和高效,企业可以更加了解消费者的需求,提供更好的产品和服务。
再次,大数据为决策提供了科学依据。无论是政府还是企事业单位,在制订政策和规划发展战略时,都需要基于大量的数据进行决策。大数据的出现让决策者可以更加客观地了解社会经济现状,分析各种数据之间的关系以及相关因素对决策结果的影响,从而做出更加明智的决策。比如,在交通规划方面,利用大数据可以实时监测交通拥堵情况,分析交通流量以及不同道路之间的关系,从而优化交通路线,提高交通效率。大数据的运用,为决策者提供了更准确的信息,帮助他们做出科学合理的决策。
最后,大数据也带来了一系列的挑战和问题。首先,数据安全问题成为了一个亟待解决的难题。大数据的存储和传输需要庞大的计算资源,但与此同时,也给数据安全带来了巨大的挑战。随着黑客技术的不断发展,数据泄露和隐私侵犯的风险也在逐渐增加。其次,大数据的过滤和分析需要高度专业的技术和人才。大量的数据对于普通人来说是一种负担和困扰,如果没有足够的专业人才来进行数据的处理和分析,那将影响到大数据的应用和发展。
总而言之,大数据给我们的生活和社会带来了诸多的变化和好处,但也面临着一些挑战和问题。我认为,我们应该在充分利用大数据的优势的同时,加强数据安全的保护和专业人才的培养。只有这样,我们才能更好地应对大数据时代的挑战和机遇,并为我们的生活和社会发展创造更加美好的未来。
大数据时代的心得体会(专业18篇)篇十二
随着科技的发展,我们已经进入了一个数据时代。无论是学校、企业还是政府,数据已经成为日常工作中不可或缺的一部分。在这样的时代里,我们应该如何看待数据以及如何利用它,这是我们每个人都需要思考的问题。在这篇文章中,我将分享我的数据时代心得体会,希望对大家有所启迪。
在数据时代,数据像水一样无处不在,对于各行各业来说,获取和处理数据成为了最基本的需求。数据涉及方面很广,不同行业、不同领域的数据都有不同的价值,但其中最重要的一点就是,数据是价值的源泉。对于企业而言,数据的分析和利用可以提高业务效率、减少成本、增加收益;对于政府而言,数据的分析和利用可以优化公共服务、提高效率、更好地满足民生需求。因此,可以说数据是当今社会创造价值的基础。
2.数据的正确性和分析能力至关重要。
在数据时代中,数据的正确性和分析能力是非常重要的,因为如果数据错误或者分析不准确,将会给企业或者政府带来巨大的风险。因此,需要保证数据的来源和准确性,并且需要具备专业的数据分析能力,准确地从大量的数据中抽取出有价值的信息。同时,数据的保密性和安全性也是需要重视的。
3.数据共享可以带来更多发展机会。
在数据时代,数据共享也成为了一个趋势。通过数据共享,可以让不同机构之间的数据更好地共享和利用,加快各个方面的发展。比如,政府可以公开数据,供社会各方使用和分析,带来公共服务的进步和效率的提升;企业可以与各种业务合作商进行数据共享,更好地满足用户需求,在商业领域实现可持续发展。
在数据时代下,个人隐私保护也成为了一个重要的话题。在收集、分析和利用大量数据的过程中,难免会涉及到个人信息的披露和利用,而这就需要更加完善的管理和监管。企业和政府都需要通过技术手段和法律途径,加强个人隐私的保护,让数据使用得到更加合理的平衡。
5.人类智慧和技术手段应该相互协作。
在数据时代下,人类智慧和技术手段是相辅相成的。数据的分析、利用离不开人类智慧的指导和辅助,而人类智慧的有限性也需要技术手段的帮助。因此,人类和技术应该相互协作,实现更好地数据分析和价值开发。只有这样,才能更好地推动科技的进步和社会的发展。
总的来说,数据时代可以给我们带来很多机遇和挑战。我们需要认真思考数据的价值和正确性,并且要用正确的态度对待数据,实现数据的合理化调用和运用。只有这样,才能在数据时代中赢得更多的发展机会。
大数据时代的心得体会(专业18篇)篇十三
大数据时代的到来,给人们的学习和生活带来了巨大的变革。近期,我读完了一本关于大数据的书籍《大数据》,在书中我了解到了大数据的定义、特点、应用和对社会产生的影响。通过这本书的学习,我深刻认识到了大数据对于现代社会的重要性,并从中汲取了一些启示和体会。
首先,我的第一个体会是对大数据的新认识。在书中,大数据被定义为指数据量巨大、处理难度大,无法通过传统的数据处理工具和方法进行处理和分析的数据。大数据的特点主要包括“四V”,即数据量大(Volume)、处理速度快(Velocity)、数据种类繁多(Variety)和价值密度低(Value)。通过学习这些概念,我意识到了大数据处理的复杂性和重要性。在现代社会中,随着互联网技术的快速发展,海量的数据正在不断产生,而利用这些数据寻找规律、洞察趋势对于企业和科学研究等领域都具有重要意义。
其次,我通过阅读《大数据》这本书,对大数据应用的广泛性有了更深入的了解。大数据不仅可以被用于商业领域的市场调研和用户行为分析,还可以被运用于医疗、金融、政府等各个领域。例如,在医疗领域,大数据分析可以帮助医生更准确地诊断疾病,提高治疗效果;在金融领域,大数据可以用于风险评估和投资策略制定。这些例子让我认识到大数据不仅仅是一个概念,它已经深入到我们的生活和工作中,并对各个领域产生了重要的影响。
第三,大数据在社会中的影响力也让我深受触动。通过大数据的分析,科学家们可以预测自然灾害的发生和规模,帮助人们采取相应的措施减少灾害造成的损失;政府们可以利用大数据分析来改进公共服务和决策,提高社会治理效能。大数据还可以通过对人群行为的分析,为企业提供精准的广告定位和销售策略,帮助企业提高竞争力。大数据的应用正引领着社会的进步和发展,让我感到对于大数据的学习和掌握变得格外重要。
第四,在书中我还学到了大数据的应对方法和技术。大数据处理的复杂性要求我们运用先进的技术和工具。例如,云计算能够提供强大的计算和存储能力,帮助我们处理海量的数据;机器学习和人工智能则能够帮助我们从复杂的数据中提取有价值的信息。了解到这些技术后,我决定在大数据领域继续深入学习,提高自己的技术水平。
最后,通过读完《大数据》,我深刻体会到大数据的革命性和不可逆转性。大数据已经成为了当今社会的一个重要标志,影响着我们生活的各个方面。不仅是企业和科研机构,普通人也需要掌握一定的大数据分析和处理能力,才能适应这个快速变化的时代。因此,在日常生活中,我们要提高自己对于大数据的认识和运用,并不断学习相关的知识和技能。
总之,通过阅读《大数据》,我对大数据有了全新的认识,了解到了其广泛的应用领域和对社会的重要影响。同时,我也学到了一些大数据的应对方法和技术。大数据已经成为一个时代的产物,对于每个人来说,掌握大数据的知识和技能变得愈发重要。我希望通过自己的努力,能够在大数据时代中不断学习和成长,为社会的发展贡献自己的力量。
大数据时代的心得体会(专业18篇)篇十四
数据时代是一个无处不在的数字世界,我们生活在这个数字化的时代当中,伴随着科技的不断发展和普及,数据也变得日益庞大、重要且不可倒退。在这个时代里,科技正在重塑着我们的社会形态和人类思维,同时也为我们带来了前所未有的机遇和挑战。通过对于数据时代的思考、探索和实践,我们可以更好地理解这个时代所面临的机遇与挑战,在其中找到我们自己的定位,并不断地完善自己。
数据时代有许多的机遇,它不仅仅是一种生产工具,更是一种创新方式和商业模式。在这个时代里,我们可以通过掌握相关技能、获得数据分析能力,集成多渠道的资源、掌握实时数据、深入挖掘数据,如此种种,才能更好的进入数据时代的角色,转化机遇。通过数据分析,我们可以做到精细化营销、用户需求细分以惠及用户、结合多种方式实现新的业务形态。当然,随着数据时代的到来,要充分利用好数据所提供的机遇并不只这些。
数据时代的挑战并不少。数据时代下的问题,已经不仅仅是如何收集和处理数据,而是如何高效地利用数据进行分析和应用。复杂的分析技术、不稳定的模型、部分数据隐私、多样性的数据资源等等,这些都是数据时代所要面对的挑战。同时,我们也需要提高对于数据的素养,了解大数据安全与数据合规的知识,从而提高数据的价值和安全保障。
第四段:探索数据价值的实践。
数据价值是数据时代的重要指标,它对于企业和个人都有着重要的意义。因此,如何获取和提高数据的价值,已成为我们进入数据时代的重要任务之一。首先,我们需要了解数据,并不断探索数据背后所蕴含的价值,从而实现数据资源的优化利用;其次,我们需要整合数据,建立包含全方位视角的数据管理体系,并实现对数据的全面监测;最后,我们需要通过开放数据共享与创新机制等手段,不断推进数据开放与应用,让数据价值得以最大化。
第五段:结语。
对于数据时代的思考不止于一篇文章,它不断地为改变着我们的生产模式,我们的思维模式和我们的价值观。只有不断探索和实践数据时代的价值,我们才能充分地提升我们的竞争力,成为这个数字化时代的中流砥柱。让我们在这样的时代里,积极拥抱变革、把握机遇,去发掘数据价值带来的更多可能。
大数据时代的心得体会(专业18篇)篇十五
随着科技的不断发展,我们已经进入了一个数据时代。在这个时代,大量的数据被收集、存储和分析,它们对于企业以及政府机构决策的重要性增加了许多。那么,对于我们每个人来说,数据时代又意味着什么呢?以下是我对于数据时代的心得体会,希望能对大家有所启发。
1.数据时代意味着我们必须更加谨慎地处理个人信息。
在数据时代,我们不得不面对一个关键问题:我们的个人信息是否足够安全?在这个时代,每一次网上购物、社交媒体互动、或是使用搜索引擎,我们都会留下许多数据,这些数据会被永久保存,并且可能会被泄露或滥用。因此,我们必须更加谨慎地处理我们的个人信息,在使用互联网时,不要轻易向任何陌生人披露自己的隐私。
2.数据时代需要我们培养更多的数据分析技能。
在数据时代,我们不仅需要更谨慎地处理个人信息,我们还需要具备更多的数据分析技能。数据分析技能的掌握,意味着我们能够更快地掌握大量信息,并更准确地做出决策。这种技能不仅对于职业发展有益,还能帮助我们更好地权衡自己所做出的决策。
数据时代为我们带来一个伟大的好处,那就是:对于某一个问题,我们能够获得更多、更立体、更具体的信息。这使得我们更容易客观地看待问题,而不被主观因素所影响。同时,我们也能够更细致地研究问题的来源,因此更有可能拥有更好的解决方案。
4.数据时代要求我们更好地保护知识产权。
随着数据时代的到来,知识产权的保护变得更加困难。尤其是在网络上,它使所有人都可以轻易地复制或加工他人通过努力和经验所创造的知识产权。因此,我们需要更加谨慎地对待知识产权,保护我们自己的知识产权并尊重他人的知识产权。
数据时代不仅是分析数据的时代,还是创造数据的时代。我们在使用互联网时,经常通过上传信息、评论、和互动活动等方式为网络世界贡献数据。而这些数据可以帮助互联网更好地服务于我们,帮助企业更好地了解他们的需求,进一步创造更具价值的产品和服务,并帮助推动社会的进步。
总之,数据时代已经带来了巨大的变化,这些变化既有好处,也有挑战。我们需要不断适应这个时代,保护我们的个人信息和知识产权,同时学会更好地分析和利用数据。通过这样,我们将能够更好地从这个时代中获得收益,同时为这个时代的发展做出更贡献。
大数据时代的心得体会(专业18篇)篇十六
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据时代的心得体会(专业18篇)篇十七
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代。
欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
大数据时代的心得体会(专业18篇)篇十八
如今,大数据时代成为炙手可热的话题。你知道读大数据时代。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。