在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
七年级数学手抄报篇一
今年我担任七年级七(11)班教学工作。认真回顾这半年的教学,现对自己的观点和做法进行重新思考,将反思所得总结如下:
第一,摒弃旧的教学观念,建立全新的教学理念。
在教学中,改变了自己在以往在课堂教学中的主角角色:采用分层走班的形式,让每个学生都有所得,尽量让学生走上讲台,由学生将知识灌输给学生。让学生在课堂上充当主角,在教师的引导下进行演绎,自主、合作地获取知识。
第二,教师应从知识的传授者转变为学习的组织者、引导者、合作者与共同研究者,要让学生演好主角的角色就必须为学生设计好适合学生演绎的剧本。因些,本人认真钻研教材,为集体备课和学习材料的设计做好充分的准备。
第三、尊重个体差异,面向全体学生“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展。”这是新课标努力提倡的目标,这就要求教师要及时了解和尊重学生的个体差异,承认差异,要尊重学生在解决问题的过程中所表现出来的差别,不挖苦、不讥讽,相反在问题情境的设置、教学过程的展开、练习的安排中,都要尽可能让全体学生能主动参与,使学生能根据自己的实际情况选择有所为和有所不为或有能者有大作为,小能者有小作为的练习。如在七年级第二学期,学完“二元一次方程组的应用”后要求学生完成一些给出方程组编写联系实际的应用题,并让学生交流评议,这样有能者得到淋漓尽致的发挥,理解不深者也可以仿照例题的背景通过借鉴书本完成。
第四、在课堂教学上突出了精讲巧练,做到堂上批改辅导和及时的反馈。
由于人数较多,新学生的数学层次参差,有针对性的辅导还不完善。另学生学习的参与度还可以提高,体现在小组讨论、新知识的举例交流等合作学习,今后还可适当增加。七年级的学生学习方法较单一,可加强学法的指导。第五、改变单纯以成绩高低评价学生的学习状况的传统评价手段,逐步实施多样化的评价手段与形式:既关注学生知识与技能的理解与掌握,又关注学生情感与态度的形成与发展;既关注学生的学习结果,又关注他们在学习过程中的变化与发展。本学期所任教的(11)班中,(11)的学生生性好动任性,自制的能力比较差,容易形成双差生,为此,我在反复教育的基础上,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。经过近一年来的新课程与新课标的实施,我深感在教学的理念上、教师与学生在教与学的角色上、教学的方式方法上、师生的评价体系上都发生了根本的转变,这都给教师提出了新的挑战,因此,只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。
因此,我觉得要想教好学生就要做到:
1.倾听学生说,做学生的知音。
2.相信学生能做好,让学做,独立思考、独立说话,教师要诱导发现,凡是学生能做的不要包办代替。
3.放下老师的“架子”和学生交朋友,来一个变位思考,让学生当“老师”。
4.教学上掌握好“度”及时指导学生的学习方法。培养学生举一反三的能力。
七年级数学手抄报篇二
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
二、讲授新课
1、同号两数相加的法则
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
三、巩固知识
课本p18 例1,例2、课本p118 练习1、2题
四、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
五、布置作业
课本p24习题1.3第1、7题。
七年级数学手抄报篇三
1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点 深化对正负数概念的理解
知识重点 正确理解和表示向指定方向变化的量
教学过程(师生活动) 设计理念
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分
界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
零上7℃,最低温度是零下5℃时,就应该表示为+7℃
和-5℃,这里+7℃和-5℃就分别称为正数和负数 .
负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
可,不必深究.
分析问题
解决问题 问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢?
等等。
可视教学中的实际情况进行补充.
不必向学生提出.
巩固练习 教科书第6页练习
阅读思考
教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结 以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题
2, 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
七年级数学手抄报篇四
三位科学家由伦敦去苏格兰参加会议,越过边境不久,发现了一只黑羊。
“啊,” 天文学家说,“原来苏格兰的羊是黑色的。”
“得了吧,仅凭一次观察你可不能这么说。” 物理学家道,“你只能说那只黑色的羊是在苏格兰边境发现的。”
“也不对,”数学家道,“由这次观察你只能说:在这一时刻,这只羊,从我们观察的角度看过去,有一侧表面上是黑色的。”
感悟:
著名的思想家培根说过:“数学使人精确。”故事中的数学家对苏格兰羊的描述充分体现出数学的严密性。
数学是思维的体操,语言是思维的外壳,数学的理性思维是建立在数学概念、数学定理等数学语言的严密界定之上的。数学语言的简洁、精炼、严密的特性需要我们在平时的数学教育教学中不断地锤炼教学语言,并进而通过数学语言的训练提升学生的思维品质。
七年级数学手抄报篇五
——毕达哥拉斯
数学是一种别具匠心的艺术。
——哈尔莫斯
数学是人类的思考中最高的成就。
——米斯拉
数学是研究抽象结构的理论。
——布尔巴基学派
数学是上帝描述自然的符号。
——黑格尔
数学是一种会不断进化的文化。
——魏尔德(美国数学学会主席)
数学是一切知识中的最高形式。
——柏拉图
数学是人类智慧皇冠上最灿烂的明珠。
——考特
数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。
——笛卡儿