人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆柱的认识教学反思篇一
个安排学生并没有领情,举手回答的学生不多,我所想要看到的“各抒己见”、“百花齐放”的情景并没有出现。是什么原因,造成了学生的冷场?除了学生进入高年级,由于生理、心理的诸多问题导致不爱回答问题,羞于表达,或懒于表现的原因以外,其中很重要的一个原因是我们平时的课堂上,为了追求所谓的“教学质量”,所谓的“高效”,牺牲了给学生说话的机会。渐渐的,学生也就习惯沉默了。
弗赖登塔尔说:学习数学的最好方法,就是学生亲自把知识发现出来。在本环节的教学中,老师并没有把圆柱的特征“教”给学生,而是引导学生通过观察、触摸圆柱体实物,用他们自己的眼睛和双手去发现,去感悟圆柱的特征。特别是在有一位学生发现了圆柱的两个底面大小相等后我并没有就此作罢,而是让全体学生想办法证明这个发现。通过汇报我们不然看出,由于老师给了学生这个机会,其结果是“横看成岭侧成峰,远近高低各不同”,学生从各自的视角出发,证明了圆柱的两个底面相等,展示了学生有个性的学习方式。
证明“圆柱的两个底面大小相等”这个环节,在备课时预想学生可能会有以下几种证明方法:
1、将圆柱形容器的盖子取下与底面相比较;
2、用圆柱形实物的底面在纸上画一个圆,然后将另一底面和画好的圆作比较;
课堂水平的一次考验。在这个过程中,令自己感到惋惜的是在生3回答之后,我竟然没有做出任何评价。我用沉默这盆冷水,浇灭了该生创新的火花;我的无动于衷,击退了该生答题的热情。这样一来,创设一个敢于质疑,乐于表达的课堂学习气氛的想法也就成了一句空话。在后来的评课中,教研组长陈老师评价说:“生3的回答,从反面论证了圆柱的底面积相等,应该得到鼓励和表扬。”学困生这样一次精彩的回答,独辟溪径的思路,我却视而不见,至今我还后悔不已。究其原因,一方面是我当时没有听懂该生的意思,没有马上反应过来;另一方面,暴露出在我的思想深处,关注课堂的进程比关注学生多一些。因为学生的回答在我的预设之外,便敷衍了事,心里更想听到的是预设中的答案。后来这位学生的回答,我之所以满意,我想也是这种心理在作怪吧。以学生为主体,具体落实到课堂上,教师应该关注每一位学生表现,重视教师评价对学生所起到的激励作用。课堂因生成而精彩,而生成离不开师生之间的互动,只有互动才能更好的促进学生的生成,课堂才能焕发出生命的活力。
圆柱的认识教学反思篇二
圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学《圆柱的认识》时,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。
在复习导入阶段,首先通过唐老鸭和米老鼠的比赛,引入学生对圆柱的初步感知,然后通过出示生活中的'圆柱形物体,导入课题,使学生感受到数学与生活的联系。
认识到长方形与圆柱侧面积之间的关系。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
在练习阶段,我设计了针对性练习和发展性练习,在形式、难度、灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。
在教学方法上,充分利用圆柱形实物,让学生自己去动手观察,认识了圆柱的特征,并利用课件辅助教学,使学生对圆柱的特征有直观的认识,有利于学生对知识的理解和掌握。
同时,在教学中也存在着一些不足:如在认识圆柱上下两个底面完全相同时,学生不能说出验证的方法,也没有时间让学生去动手操作验证;在学习圆柱的侧面展开与长方形各部分的关系时,学生对知识理解比较困难,演示不直观。
总之,在这堂课中我丰富了自己的教学经验,也提高了自己的教学水平,通过这样的活动锻炼了自己的能力。在以后的教学工作中,我会吸取经验教训,弥补自己的不足,更好的进行数学知识的教学。
圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学《圆柱的认识》时,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。在复习导入阶段,首先通过唐老鸭和米老鼠的比赛,引入学生对圆柱的初步感知,然后通过出示生活中的圆柱形物体,导入课题,使学生感受到数学与生活的联系。
在练习阶段,我设计了针对性练习和发展性练习,在形式、难度、灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。
圆柱的认识教学反思篇三
这节复习课教材内容包括圆柱的特征、圆锥的特征.、圆柱的侧面积和表面积。圆柱的体积、圆锥的体积计算公式的推导,利用公式直接计算、圆柱的.侧面积和表面积。圆柱的体积,圆锥的体积。利用公式求:圆柱形物体的容积。能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。我在教学时,发现大部分学生对于直接利用公式计算的题目掌握的很好了,但是也有一些不足,例如:已知底面周长和高求体积;或已知体积和底面半径求高这种变式题,还有部分学生不熟练。在今后的教学中还要加强这方面的练习。
圆柱的认识教学反思篇四
在导入阶段时,关键是要让学生感受到数学与生活的联系。因此,我直接揭示课题,今天老师和大家一起来认识一种新的立体图形——圆柱(出示圆柱),同学们,你们看到过这样的物体吗?你能举一些生活中像这样的物体吗?学生一一展示自己课前收集好的圆柱形物。在教学圆柱的特征时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。
圆柱的认识教学反思篇五
由于我课前认真研读教材,把握教学的重点和难点,精心设制教学过程和教学活动,上课时我做到胸有成竹。通过这节课的教学我感到自身的教学水平和驾驭课堂的能力得到了提升,从同事评课反映,我认为这节课的教学是比较成功的。这节课教学方法主要体现在我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。
综上所述,首先,交流预习作业。在预习作业里我在备课时就设制了两个知识点,让学生课前完成,一个知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,另一个知识点是要求学生预习教材回答两个问题,两个问题是与这节课教学密切相关的内容,在教材上都是能找到答案的。在对预习作业交流时我发现学生能比较顺利和准确的.回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。
其次,交流猜想和探索如何验证。我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。
再次,课件展示、构建新知。让学生观看课件:课件2是把刚才实际操作的过程再次演示和呈现,课件3和课件4是把圆柱的底面平均分成32份、64份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。为了拓展学生的知识面,我此时还提出了转化后的长方体底面的长和宽分别与圆柱体的底面周长和半径有什么关系,这在教材和参考教案都没有的知识点。学生的思维得到激发,学生勇于回答,学生回答错了,我既没有批评学生,也没有急不可耐给出答案,而是让学生再想,后来还是有学生能正确回答出来了。我想如果不给学生思考的时机直接给出答案,这样与学生发现问题的答案所产生的效果就截然不同了。
推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。
最后,分层练习,发散思维。在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了三道练习题。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。在练习时我不断巡视关注学生练习情况,对出现的错误解答方法我不回避,在展示学生练习时既展示成功的也展示错误的。学生练习出现错误是正常现象,在讨论和评讲练习时是很好的资源,要充分的利用。
圆柱的认识教学反思篇六
,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的`思维走向正确的方向,这时教师的引导才是行之有效的。
主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。
圆柱的认识教学反思篇七
通过本节课的教学发现学生对圆柱的表面积这部分知识理解掌握较深、较透、计算也比较准确。同时,也发现学生会出现以下错误:
错误1:侧面积和表面积计算公式不熟练,圆的面积和周长公式混淆。
错误2:算式正确,计算又会出错。
错误3:圆柱表面积计算在生活中的实际运用,有时只求侧面积和一个底面,有时只求侧面积,还有时求侧面和两个底面,混合在一起学生就乱套了。
错误4:“进一法”的运用,部分学生也出错。
针对以上情况,我觉得教学时在圆柱侧面积计算公式推导上下了很大功夫使每个学生真正理解圆柱侧面积的.计算方法的推导过程,并使这一推导过程在脑海里建立表象,为计算扫清障碍。
圆柱的认识教学反思篇八
圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。在教学新知识时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面展开图时,我设置了悬念,先让学生猜想侧面展开后是什么形状,通过猜测再进行验证,学生在动手操作、小组合作学习、相互交流的过程中认识到长方形与圆柱侧面展开图之间的关系。
我把教学重、难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效地培养了他们的逻辑思维能力。在练习阶段,我设计相应的练习,不仅检查了学生对基础知识的掌握情况,也进一步锻炼了学生对知识的灵活应用能力。在教学方法上,我充分利用圆柱形实物,让学生自己去动手观察,认识了圆柱的`特征;并利用课件辅助教学,使学生对圆柱的特征有直观的认识,这样有利于学生对知识的理解和掌握。
圆柱的认识教学反思篇九
生活中的圆柱体很多,学生看到的也很多,所以苟老师采用了先学后教的教学模式进行教学。本课的重点是认识圆柱的特征及圆柱展开图的研究,所以在教学时,苟老师通过学生自己动手操作和探索研究、自苟老师发现来掌握圆柱的基本特征的。
苟老师认为苟老师在这节课教学中最突出的地方就是能始终围绕学生的思维和操作探索研究在转,而不是学生围绕教师在转,因为在备课时就想到学生发现的问题与预案中的教学顺序未必相同,所以当学生说发现了上下两个圆面是“相等”时,苟老师们就先研究两个底面,这时苟老师反问一句“你怎样证明这上下两个圆就是”完全相同“的吗?这样一下子就把学生带进探索的境界中,学生在课堂中能不能进行探究,关键还是要教师的引导。学生通过自己的方法证明了上下两个圆是”完全相同'后。
对于高的探究,因为高在圆柱中是比较抽象的,如何让学生体会高的无数条及高的存在是本节课的难点,苟老师围绕着学生的思维走,学生基本能做出侧面上的高,所以苟老师根据学生提出的高让学生去思考高的特征,在研究完高时,苟老师反问一句“除了这些高以外,还有吗?”把学生再次带入探索的境界。关于圆柱侧面剪开的教学,苟老师做了一些处理。苟老师给学生准备的圆柱都是用一张长方形跟两个圆包装的,所以在打开时,学生的答案都是统一的,在这时苟老师出示了一个圆柱打开是平行四边形,反问“这是什么原因啊?”这样就点燃了学生的好奇心,学生就会主动地去思考。
通过动手做,本课的难点就迎刃而解,真是实践是检验“知识”的唯一标准啊!这样就将教学重点、难点化抽象为具体,并把“观察、操作、发现”的方法贯穿课的始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
圆柱的认识教学反思篇十
生1:圆柱有两个底面
生2:圆柱的底面是圆形
〔学生举手的人不多,有点冷场〕
师:看来大家对圆柱有了一些了解,下面我们来进一步探索圆柱的特征。
(接着,教师出示小组学习要求,让学生通过观察圆柱实物,围绕3个问题,探索圆柱的特征)
师:通过观察你有什么发现?
生1:我发现圆柱的两个底面是圆形。
生2:我觉得圆柱的两个底面面积相等。
师:你们有办法证明圆柱的两个底面相等吗?
生3:〔该生是学困生,但在公开课中回答问题一向很积极〕如果圆柱的两个底面不相等,那么圆柱就会一头大,一头小。
师:恩(停顿),你能再说说吗?〔这时我听得不太清楚〕
生3:两个底面不相等,一头大,一头小,会东倒西歪。
师:(没有做出评价)还有别的方法吗?
生4:我是通过把上面的盖子取下和底面相比,得出两个底面大小相等的。
师:说得太好了。(露出满意的神情)
(之后,老师拿出一个有盖的茶叶罐,按生4的方面演示了一遍)
板书:面积相等的两个圆
师:圆柱的面还有什么特征?
生5:我发现圆柱的表面摸起来很光滑,永远也“摸不到头”。
师:为什么“摸不到头”?你觉得圆柱的这个面和底面有什么不同?
生6:底面是个平面,而这个面不是平面。
师:我们就说这个面是曲面。(板书:曲面)