无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
解决问题的策略的教学设计篇一
(出示两幅天平图,引导学生观察思考)
生:1个苹果的质量是1个梨的2倍。
生:1个梨的质量是1个苹果的1/2。
师:根据两幅天平图,你能求出1个苹果和1个梨各重多少吗?
生:1个苹果重200克,1个梨重100克。
师:你是怎样推想的?
生:把图2左盘中的1个苹果换成2个梨,就成了4个梨重400克,可以求出1个梨重100克,再求出1个苹果重200克。
生:把图2左盘中的2个梨换成1个苹果,就是2个苹果重400克,1个苹果就重200克,再求出1个梨重100克。
(课件动态演示把1个苹果换成2个梨或者把2个梨换成1个苹果)
(出示“曹冲称象”的图片)
师:曹冲是如何用替换的办法称出大象的质量的?
生:曹冲是用石头替换大象的。
【反思】导学的艺术在于唤醒。学生虽然是第一次正式学习用替换的策略解决问题,但在他们的生活经验中已模糊地经历过类似的方法,只是还没有建立起一种完整的数学模型。所以在课的引入部分,从直观的天平图,到感性的数形结合,再到抽象的推理计算,并结合“曹冲称象”的典故,一下子就扣住学生心弦,唤醒了他们头脑里已有的生活经验,为下面的探究过程做好了心理准备和认知铺垫。
(图文呈现倒题,引导分析)
师:题中告诉了我们哪些已知条件?
(生答略)
师:怎么理解“小杯的容量是大杯的1/3”?大杯和小杯容量的关系还可以怎样说?
生:大杯的容量是小杯的3倍。
生:1个大杯可替换成3个小杯。
生:3个小杯可替换成1个大杯。
师:现在能直接求出小杯和大杯的容量吗?
生:不能。
师:怎样用替换的策略来解决这个问题呢?
(生互相说)
师:选择一种你喜欢的方式进行替换,在老师发给你的纸上画出示意图来,然后根据示意图,再列出算式解答。
(生画图、列式计算,然后同桌交流)
师:谁能把你的`方法介绍给大家?
(学生代表在投影仪上展示和介绍)
生:我把1个大杯换成3个小杯,这样就有9个小杯。一共是720毫升,720÷9=80,可以算出一个小杯的容量是80毫升;80÷1/3=240,1个大杯的容量就是240毫升。
生:我是把6个小杯换成2个大杯,这样就有3个大杯,720÷3=240,可以先求出一个大杯的容量是240毫升;240×1/3=80,再求出1个小坪的容量是80毫升。
(师结合学生汇报,逐步形成板书)
】如何将静态的文字转化为学生动态的思考?如何在动态的思考中感受替换的过程?这是非常值得关注的两个问题。所以在教学过程中,先让学生自主分析数量关系,然后组织小组讨论寻求策略,接着独立画图感悟思考,最后师生交流,教师用简洁明了的板书体现替换的策略。这一过程符合学生的认知规律,同时也体现了“数学教学是数学活动的教学”,师生在互动对话中建构数学模型。
解决问题的策略的教学设计篇二
【知识与技能】
理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。
【过程与方法】
通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。
【情感、态度与价值观】
在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。
二、教学重难点
【重点】用转化策略比较不规则图形的面积。
【难点】转化的方法及应用。
三、教学过程
(一)导入新课
大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。
教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。
引出课题――解决问题的策略。
(二)讲解新知
1。问题探究
大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?
学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。
学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。
教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。
教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。
2。方法总结
教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。
教师总结学生回答:
(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;
(2)图形转化可通过平移、旋转、翻折、拼接等方法;
(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。
教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。
教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。
(三)课堂练习
算一算下列三个图形中阴影部分面积占整个面积的几分之几。
(四)小结作业
小结:总结本节课学习内容。
作业:课后练一练。
解决问题的策略的教学设计篇三
教学目标:1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)
(严肃,让学生觉得真换)
怎么啦?(学生说说)
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)
用铅笔换钢笔依据
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)
紧接板书:价格相当
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象(重量相同)
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字
三、协作创新
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)
2替换的依据是什么?(在题目关键句的下面画一画)
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)
小组交流:
知道怎么替换了的同学请举手
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的.方法和其他同学完全一样吗?
结合课件画面讲解,板书
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)
课件展示:
替换前
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)
替换后
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
这个问题还能用替换的策略解决吗?
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成
让一学生上黑板进行板演(力求作出示意图)。
全班交流
引导学生把四大名著换成三国演义
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
解决问题的策略的教学设计篇四
一
单元教材分析
二
单元目标要求
教学用列表的策略解决实际问题。
三
单元设计意图
1 让学生把信息填入表格,学习整理信息的方法,体会对解决问题的作用。
(1) 把已知条件和要求的问题全部填进表里。
(2) 根据要解决的问题,选择相关的条件填入表格。
教材在编写上有以下特点。
第一, 选择相关的条件填入表格。
第二,利用表格、紧扣问题,设计解题步骤。
2 让学生在解决实际问题的过程中,逐渐养成整理信息的习惯。
(1) 从有形地整理到无形地整理。
(2) 解决新颖的问题。
第一,改变例题的教学观念。
四
单元目标达成分析
时间: 年 月 日
板块
教师活动
学生活动
教学目标及达成情况
小明
3本
18元
小华
5本
( )元
小军
( )本
42元
时间: 年 月 日
板块
教师活动
学生活动
教学目标及达成情况
桃 树
3 行
每行7棵
梨 树4 行
桃 树
3 行每行7棵
苹 果 树
8 行每行6棵你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路) 比较小结1、用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形? 长(米)8765宽(米)1234面积(平方米)8141820想一想,如何围面积最大?独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵) 8×6=48(棵)48-21=27(棵)独立提问题,设计表格,填表列式解答 互相交流引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。指出:在确定长方形周长后,长和宽越接近,面积就越大。 2、“想想做做”第1、3题说明:1、重点突出板块设计; 2、备课时重点突出教学设计(包括教师与学生活动设计) 3、教学反思在“活动目标及达成情况”栏填写。
解决问题的策略的教学设计篇五
周 次
9
课次
1
授课课题
解决问题的策略(1)
教 学基本内容
教学目的
和要求
1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。
教学重点
教学方法及手段
有条理,有序的思考问题
学法指导
一一列举
教
学
环
节
设
板书设计
执行情况与教学思
周 次
9
课次
2
授课课题
解决问题的策略(2)
教 学基本内容
教科书65页例3及“练一练”练习十一4-5
教学目的
和要求1、让学生继续在解决问题的过程中体验并掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。2、进一步培养学生思考数学问题的条理性、有序性,进一步体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、进一步培养学生的探索意识、策略意识和合作意识,让学生进一步感受数学与现实生活的联系。
教学重点及难点
掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。
教学方法及手段
列表整理
学法指导
有序列举
教
学
环
节
设
计一、导入新课提问:上节课我们学习了一种新的解决问题的策略,是什么?运用这种策略时要注意什么问题?谈话:这节课我们继续学习用列举的策略来解决数学问题。(板书课题:解决问题的策略)
二、创设情景,讲授新知1、谈话 2、教学例3。题目告诉我们哪些信息?括号里的话是什么意思?要我们解决什么问题?你打算用什么策略来解决这个问题? 3、这道题很适合用列举的策略来解决,我们知道列举要有条理、有顺序。想一想,按怎样的顺序列举会不重复不遗漏?在小组里讨论一下。4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)从只住1个3人间想起,还需要多少个2人间?你是怎样想的?教师板书:板书算式:23-3=20(人),20/2=10(间),并在表里填写1和10。接下去,如果住2个3人间,还需要多少个2人间?请计算出来。教师板书:3*2=6(人),23-6=17(人),17/2=8(间)……1(人)提问:这样2人间怎样安排?符合题目要求吗?谈话:这种情况是不符合要求的,那么这次列举的内容要否定掉。可以在2人间里对应的格子里画“—“,表示否定。(板书:—)谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。
6、比较:两次列举有什么相同和不同的地方?你认为哪种列举比较简便?让学生把答句填写完整。
板书设计
执行情况与教学思
周 次
9
课次
3
授课课题
解决问题的策略(3)
教 学基本内容
教科书练习十一6-9
教学目的
和要求
教学重点及难点
具体情境中能用列举法解决实际问题
教学方法及手段
优化方法
学法指导
有序的列举
教
学
环
节
设
板书设计
执行
情况
与教学反思
解决问题的策略的教学设计篇六
各位专家:
大家好!
我说课的内容是苏教版课程标准实验教科书五年级上册第六单元解决问题的策略——列举。本课是在学生已经学习过用列表和画图的策略解决问题,对解决问题策略的价值已有了一些具体的体验和认识的基础上。进一步使学生加深对现实问题中基本数量关系的理解,增强分析问题的条理性和严密性,也使学生进一步体会到解决问题的策略常常是多样的,知道同一个问题可以用不同的策略,从不同的角度去分析,有利于提高学生分析,解决问题的能力。
根据课程标准与教学内容并结合学生实际我认为这节课的教学要达到以下几个目标:
(1)、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。
(2)、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。
(3)、增强解决问题的策略意识,提高解决问题的实际能力。
依据课程标准和教学目标,我确定本课的教学重点是:能对信息进行用“一一列举”的策略解决实际问题。教学难点是:能有条理的一一列举,并进行分析。
1、通过直观、推理让学生充分感知,然后经过比较归纳,最后概括出解决问题的策略,从而使学生从形象思维逐步过渡到抽象思维,进而达到感受新知、概括新知、应用新知、巩固和深化新知的目的。
2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口、动眼以及采用小组合作交流等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。
本节课让学生运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
为了有效组织学生的探索和发现等学习活动,课前我准备了一套多媒体教学课件,并为学生准备了18根等长的小棍、表格。
为了实现教学目标,突出重点,突破难点,在教学过程中我主要分为四个板块来教学:
一、创设情景,体验列举;二、合作交流,探究策略;三、应用列举,积累列举技巧;四、总结延伸,发展列举。
一、创设情景,体验列举
生活化、活动化的情景最容易激发学生学习的积极性,让学生对数学学习充满兴趣。
1、课前游戏:飞镖激趣
因此,在课的开始,我设计了活动化、与生活化的情景,首先,请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?(教师顺势板书:一一列举)
2、门票引入:
再出示:珍珠泉公园儿童门票每张10元,小红口袋里有两张5元,五张2元,两张1元的纸币。小红怎样付10元门票钱?让学生列举出几种付钱的方法。
3、顺势揭示课题:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。(板书课题:解决问题的策略)
二、合作交流,探究策略。本环节共分两个步骤进行:
(一)、探究例1,感知策略
接着通过以下几个问题引导学生独立思考并动手操作:
(1)这道题有哪些信息,需要解决什么问题?
(2)根据所给信息,你能想到什么?(围成的长方形有什么要求?)
这时学生独立思考接着要求想好的学生可以和同桌说一说。(教师参与讨论)
2、布置任务,小组合作
同学们的想法各不相同,你能想办法把所有不同的围法都找出来,用你喜欢的方式纪录下来。如果有困难,可以用小棒代替1米长的栅栏摆一摆。(写好后跟同桌交流)
然后全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)
教师小结:这样按一定的顺序一个一个写下来,我们就可以比较清晰地看出一共有4种不同的围法。(课件)
最后让学生比较:有序和无序的两种,你更喜欢哪一种?为什么?(有序,不重复、不遗漏)(板书)
过程进行了抽象思考,发展了学生的抽象思维能力。
接着让学生讨论王大伯围的是羊圈,他该围成什么样的长方形?为什么?这样让学生通过比较长、宽以及面积,看看能发现什么。
引导学生观察对比,加强数学思维,同时介绍这是大数学家欧拉的定律,培养学生的数学素养。对这一问题进行延伸思考,提高透过现象寻求本质的意识和能力。
(二)、教学例2,丰富列举策略
例题2比较复杂,先让学生理解“最少订阅1本,最多订阅3本”是什么意思,从而发现这类问题在列举之前,先要进行适宜的分类。分类以后让学生用打勾的方法填写表格,教师说明表格的填写方法,防止学生把只订阅1本的勾都打在一列里,和订阅3本的相混淆。这题里订阅2本是难点,要联系曾经学过的搭配规律。这道例题教学的重点是怎样得到所有的订法,突出思维的条理性和周密性。
三、应用列举,积累列举技巧
列表是列举的一种很好的形式,但不是唯一的形式,所以在练习时对学生说明:也可以用其他的形式来列举。在学生做完“练一练”,展示各种列举形式,体会列举形式的多样性,说明以后可以用自己认为最简单的形式来列举的出结果。然后把“投中两次”改成“投了两次”,让学生体会到要先分类再列举。这两题的练习正好比较了简单和复杂两种情况如何运用好列举法,巩固了所学知识。
四、总结延伸,发展列举
王大叔为了感谢大家的帮忙,想请大家去划船。我们班有48个同学,每条大船可以坐6人,小船可以坐4人,有多少种租船方案?这是下节课我们要解决的问题,有兴趣的同学课后可以先去思考思考。
总之,本节课的教学设计我力求结合新课程理念,根据学生已有的生活经验,利用多媒体营造出生动的学习情景,引导学生主动交流、积极动手、开动脑筋、充分体验,希望整个教学过程会成为孩子们探索数学的发展过程。
解决问题的策略的教学设计篇七
经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。
进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。
培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。
1课时
进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。
(一)知识梳理
1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。
2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。
3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。
4、中括号和小括号在算式的作用是()。
(二)题型、方法归纳与典例精讲
1、四则混合运算计算。
例:计算下面各题。
方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
解决实际问题的计算。
方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
3、解决问题的策略,根据已知条件提问题并解答。
方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。
(三)归纳小结
在没有括号的'算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
(四)随堂检测
1、计算下面各题。
赵阿姨从12只河蚌里剖出432颗珍珠。
如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?
照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?
板书设计
四则混合运算、解决问题的策略
在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
作业布置
1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。
预习102页有关内容。
解决问题的策略的教学设计篇八
教材分析
启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标。
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的`策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
板书:画图、列表、倒推、替换
2.提出课题:今天,我们继续来研究解决问题的策略。(揭题)
二、新课:
提问:你准备怎样来解决这个问题?
学生独立思考交流想法。
根据学生回答板书各种假设:
假设10只都是大船
假设10只都是小船
假设5只大船,5只小船。
2、借助画图,初步感知调整策略
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(2)研究调整:
发现矛盾引发思考:问题1:假设10只船都是大船,从图上我们发现什么问题呢?(板书:多出8人)
追问:为什么会多出来呢?
借助画图,研究调整:
问题2:那多出8人需要怎样调整?(板书:大船小船)
先想一想,然后再图上画一画。集体交流:画法,上台展示并让学生说说想法
追问:你是怎么想到把4条大船调整为4条小船的呢?
[设计意图]
帮助学生调整策略:一条大船调整成一条小船会少了2人,每划去2人就相当于将一只大船替换成了一只小船。多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
3、借助列表,再次感知调整策略
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)
(1)观察书上p91页表格,发现什么?
(2)借助表格调整:
填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少了2人)
引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
学生展示方法:
[设计意图]:引导学生:少2人,需要把一些小船调整为大船。一条小船调整为一条大船可以多做2人,所以调整为小船4条,大船6条。
4.还有其它方法吗?想一想,在小组里交流一下。
5、检验结果
想知道结果是否正确怎么办呢?你有办法检验吗?
学生口答,老师板书:65+43=42(人)这是对什么进行检验?如果还需要对船只进行检验怎么办呢?6+4=10(条)
6、小结策略
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(板书:1.假设2.调整3.检验)
三、练习:
1.练一练第1题:
要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)让学生完整说一说,是怎样画图、调整,来推算出结果的)
2.练一练第2题:
出示题目:估一估:可能会是各几块?你是怎么想的?
学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?
五、小结反思,分享收获
今天,我们学习了解决问题的策略,你有什么收获呢?
六、巩固提高
你能运用今天所学的知识解决这个问题吗?
板书:解决问题的策略(假设)
解决问题的策略的教学设计篇九
今天我说课的内容是五年级下册第9单元解决问题的策略——倒推的第一课时。我想从下面几个方面来说课:
纵向看:《数学课程标准》在确定课程目标时特别提到了下面的要求。“形成解决问题的一些基本策略,体验解决问题策略多样性,发展实践能力和创新精神”。因此新编的苏教版国标本教材分六次安排了不同的解决问题的策略:有列表法、画图法、列举法、倒推法、替换法、转化法。这些策略既相互独立,一般都是在特定的问题情境下来解决特定的实际问题,同时他们又相互作用,比如倒推是解决问题的一种策略,运用时还需要其他策略相配合,尤其是四年级的列表整理条件和问题以及画图这些策略。
需要说明的是:解决问题的策略和解决问题的方法是不一样的。方法是可以教的,而策略则更注重学生自己去感悟!在教学中,应该着力引导学生感悟策略的价值,领会策略的真谛,不断提高对策略的本质认识。
横向看:本单元是在学生已经学习了画图和列表的策略基础上,教学用“倒过来推想”的策略解决问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。我认为通过教学这部分内容更多的还是培养学生能够自觉的应用这种策略的意识,以达到不断丰富学生数学底蕴的目的。
教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”这一策略的价值及其适用性,以提高学生解决实际问题的能力。
说教学目标、教学重难点:
根据课程标准和教学内容我认为这节课的教学要达到以下几个目标:
1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、使学生在对解决实际问题的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学生学好数学的信心。
教学重点:引导学生体验感受事物和数量的发展变化情况,从变化后的结果开始,
运用“倒推”的策略解决实际问题。
教学难点:知道什么情况下用“倒推”的策略解决问题,和怎样运用“倒推”的策略去解决问题。
(一)方法铺垫:
首先请一名学生依次说说她上学时主要经过哪几个地点,再请另一名学生如果她原路返回到家,会经过哪几个地点?从而使学生初步体会“倒推”的策略在生活中的价值,激起学生浓厚的学习兴趣。接着,出示练习十六中的第5题,让学生们尝试练习,因为这是学生们曾经练习过的形式,因此,虽然没有学习本课,但对于学生而言没有难度。
这样的设计从学生的可接受性入手,先带着学生进入学习的状态,从身边的事物开始,为后面知识的新授打下坚实的伏笔。
(二)探究新知:
在例1的讨论中,我着重从变与不变着手,“当甲杯倒入乙杯40毫升后,两杯果汁同样多”,这样一来,什么没变?什么变化了?是怎样变化的?引导学生分析得出,根据“现在两杯果汁各200毫升”,要想知道原来两杯的果汁容量,得把那40毫升倒还给甲杯;接下来,学生通过表格的填写反思“倒回去”的过程;通过课件的演示,丰富了对“倒推”的感性认识。
在例2的讨论中,首先让学生感到,这道题虽然与例1不同,但都要从现在的数量追溯到原来的数量;接着让学生用学过的方法简明扼要地将题目中的条件及问题呈现出来;然后启发学生逆着事情的变化顺序推想:送出的应要回,收集的应去掉。这样既降低了学习难度,有突出了倒推的思路。当然,为了鼓励学生富有个性的思考,发展学生的思维能力,这道题还可以有其他解法,教师要及时点评,同时可以将另一方法作为倒推结果的检验。
对于两个例题的学习,主要是让学生解决具体的问题,体会适用“倒推”的策略来解决的问题的特点,初步掌握运用这一策略解决实际问题的基本思考方法和过程。同时让学生认识到:倒推只是解决问题的一种策略,运用时还需要其他策略相配合,如:列表、摘录。
(三)巩固运用:
这个环节的题目主要来源于课本,对于课本中的练一练,我把主要力气花在指导学生体会数量变化的过程,即理解“一半多一张”。现场让学生拿一拿,送一送不失为一个好办法,学生在动手操作中,体会到要“先送一半,再送一张”。这样,这道题的难度大大被降低了,学生能很快地整理出事情从开始到结束的变化过程,排出各次变化的次序后再逆着事情的变化顺序推想出原来。
为了让学生彻底理解本道题,我紧随其后,将题目更改为“一半少一张”, 这样不仅可以巩固对新知的理解,而且对倒推有了更深的认识,达到了把课堂上学习的内容内化为自己的技能的目的。
“练习十六”的1、2两题让学生灵活运用学过的数学知识去解决,进一步体会“倒推”策略的意义及其适用性,提高解决问题的能力。
(四)思维拓展:
为了让学生运用自己所学得只是解决生活中的实际问题,同时让学生感受到这一策略在日常生活中的巨大作用,我设计了以下的思维拓展。
二是生活中人们对倒推策略的思考:司马光救人是将“人如何离开水”变成“水如何能离开人”;破冰船是将如何让“从上往下施力”变成“从下往上施力”等等,这些都体现了倒推在生活中的应用。
本节课的教学安排主要基于以下两方面进行思考的:
1、形成一种观念——多种策略的综合运用。
本节课,我注重培养学生应用策略的意识,对于小学生而言,在抽象思维还未完全形成的时候理解倒推策略有一定难度;同时在什么样的题目中运用倒推策略也是部分学生的困惑。因此,借助于已学策略——列表、摘录,甚至画图,都成为帮助我们倒推的工具,在这些策略的扶助下,才能进一步体现解决这类题目倒推策略的优越性。
2、突出一条主线——倒推。
在这一课的教学中我更注重将倒推作为解题的需要。从例题到练习,都是在突出这根主线,使学生能真切的感受到对于这类题目,倒推确实是一种行之有效的解决问题策略。
学生在由浅入深的练习中,以及在同一题多种方法的比较中,多次感受到这一策略的优势,借助于简单明了的整理,不仅让学生理解题目的内涵,而且学生解决问题的能力得到了提高。
当然培养学生应用各种策略解决问题的意识,是一个长期而漫长的过程,需要我们教师不懈的努力。
解决问题的策略的教学设计篇十
根据教材编排要求,我以为本节课的教学目标有三点:一、知识目标:让学生回顾用转化策略解决问题的过程,通过解决具体问题,感悟转化的含义。二、能力目标:让学生在具体问题的解决过程中,进一步积累运用转化策略的经验,掌握一些常用方法和转化技巧。三、情感态度目标:让学生进一步增强解决问题的策略意识,体会运用转化的策略是解决问题的有效方法,增强克服困难的勇气,获得成功的体验。
说教学重点和难点:学生自主运用转化的策略解决问题。
结合教材和教学目标我将采用如下的教法和学法:
(1)合作探究法。教师通过设疑,引导学生合作学习,逐步启发学生探究用转化的方法来解决问题。增强学生探索的信心,体验成功。
(2)练习巩固法。力求突出重点、突破难点,使学生运用知识、解决问题的能力得到进一步的提高。
遵循小学数学课堂教学的现实性、趣味性、思考性和开放性,本着培养学生的数学意识和提升学生运用知识解决实际问题能力的设计思路,我将本节课的教学内容分为五个环节:
一、创设情境,揭示“转化”
数学是和生活密切联系的,课的开始,我先跟学生讲了一个爱迪生和他的助手测量灯泡体积的故事。助手花了几个小时的时间来计算灯泡的体积,也没有算出来,爱迪生能很快的算出来,让学生猜一猜爱迪生是用的什么方法?根据学生的回答,我适时小结:把灯泡的体积转化成水的体积,就是一种非常重要的解决问题的策略,叫做“转化”。通过故事情境导入新课,激发了学生的学习兴趣。
二、教学例题,感知“转化”
我首先出示例1的两幅图,让学生猜一猜这两幅图的面积大小,并且提问你们准备用什么方法来证明你的猜测?先让学生独立思考,然后四人小组交流各自己的想法。根据学生回答,教师配以课件演示。(将其转化成长方形比较)对照课件我继续追问:(1)第一个图形是怎样转化成长方形的?上面的半圆向什么方向平移了几格?(2)第二个图形是怎样转化成长方形的?左右两个半圆分别按什么方向旋转了多少度?指名回答后,我又再次用课件演示“转化”过程。一边演示,一边和同学共同叙述转化:第一幅图把半圆向下平移5格后转化成了长方形;第二幅图把左右两个半圆旋转180度后转化成了长方形;通过演示、回顾、叙述学生经历了转化的过程,丰富了感性认识,这时我又适时点拨:在图形的变化过程中形状发生变化,面积不变,都转化成相同的长方形,所以一、二两幅图的面积也相等。在“变与不变”的讨论中,让学生感受到:通过转化可以化繁为简,能清晰地比较出两个图形的大小。
在这个环节中,我未作铺垫直接出示例题,提出富有挑战性的问题,通过问题解决让学生在探索交流的基础上,借助多媒体课件的演示,使学生对图形的具体转化方法获得清晰的认识,感受转化是解决问题的一种好策略。
三、回顾举例,体验“转化”
为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系。在完成了例1的教学任务后,我让学生回忆以前学过的知识中,在哪些地方都运用到了转化的策略?我先给学生一个交流的机会,让他们把回忆的内容给小组成员说说,然后全班交流汇报。通过讨论交流学生会联想到平面图形面积公式推导,体积公式推导,分数、小数的计算、不规则图形的周长计算等等……我让学生具体说一说推导过程。边演示边叙述,比如……课件演示一句话概括。为了引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,我又追问:我们在运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题)小结同学们的答案,并板书转化的核心作用“化繁为简、化新为旧”。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。
四、重组练习,运用“转化”
为了帮助学生掌握一些常用的转化方法和技巧,教材安排了多条练习。教学中我根据知识的体系,对练习的内容进行调整、归类、重组,加强整合力求体现练习的梯度和层次。让学生在巩固知识的同时,刷新解决的能力。我主要是从两个方面重练习:一、“空间与图形”领域的练习;第二是“数与代数”领域的练习。
在“空间与图形”方面,我设计了这样几道练习:(对照课件一两句话概括)
在完成以上几道练习后,引导学生回顾小结,进一步体验,通过平移和旋转,我们把复杂图形变个形转化成简单图形,原来的问题就迎刃而解了,就象匈牙利著名数学家路莎彼得说过的那样:解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。
在“数与代数”领域,我设计这样几道练习:首先出示一道分数加法计算题1/2+1/4+1/8+1/16。如果用通分的方法,学生感觉很麻烦。顺势提问我们还可以借助什么策略来化繁为简呢?如果有困难,老师给一些提示:如果把这个大正方形看作“1”(点击)。
这些分数分别表示什么意义?教师配以课件演示。并强调单位“1”相同。
提问:求得是这些涂色部分一共是多少?你能转化成一个什么问题呢?引导学生说出从空白部分入手,把这个加法算式转化成一个减法算式也能求出它们的和。
学生豁然开朗,这时我给这题再添上一个加数,加一个1/32,和是多少?要求阴影部分的和可以从空白部分着想,看来用转化的思想解决问题也可以从反面入手。把抽象的数转化成图形,数形结合有助于思考,运用转化的策略解决问题时,让学生谈谈自己使用“转化”策略解决问题时候的体会和感想。
我以为通过这样的设计体现了数与形的转化和结合,深化了知识,帮助学生理解知识的形成过程。
其次,我还设计了这道练习,出示练习十四第一题,面对复杂的问题,学生往往感到束手无策,我根据学生的年龄特点,进行有效地引导:(课件演示)
叙述:如果有4支球队比赛,第一轮像这样比一比,决出2个胜者;第二轮再2个胜者比一场,决出冠军。一共进行了3场比赛。
如果有8支球队比赛呢,第一轮像这样比一比,比了几场?淘汰了几支球队?(4支)第二轮再这样比一比,比了几场?又淘汰了几支球队?(2个)最后两个胜者比一比,就决出冠军。数一数,一共进行了几场比赛?(7场)
那16支球队比赛,决出冠军要比几场呢?(电脑演示:16支球队出来)
面对学生的成功喜悦,我又追问:如果从淘汰的角度,反过来思考,还可以选择转化成一道简单的减法算式?在不断地自我反思和追问中,学生发现还可以直接将问题转化成16—1的算式进行解决。
按照教材的编写意图对练习进行重组,尊重学生的学情、巧妙地体现知识体系,呈现形式灵活、多样。通过提问、交流,既调动了学生学习的积极性,提高了练习实效,又培养了学生解决问题、分析问题的能力。而多媒体的功能也在此环节中得以充分发挥,数字转化为图形或曲线转化为直线,都能淋漓尽致的表现出来,让学生能头、脑、眼、口、手并用,达到最佳学习状态。)
五、故事小结,深化“转化”
1.数学文化渗透(曹冲称象)
课的结尾,我会让学生讲一讲“曹冲称象”的故事,并指出曹冲是把大象的重量转化成了石头的重量。这样的设计照应了开头,同时也将学生的眼光从课堂再次拉向了现实生活,有利于学生自觉运用转化的策略解决生活中的问题。
最后我用著名数学家华罗庚的一句名言来结束全课。
“神奇化易是坦道,易化神奇不足提”————华罗庚
意思是说,把复杂的问题转化成简单的一路平坦,而把简单的问题转化成复杂的就不值得提倡了。