每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
朝花夕拾封面设计意义篇一
教学主要内容:
一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.
教材编写特点:
简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。
教学的重点、难点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。
教学关键:
理解一位、两位、三位小数的意义。
基本活动经验:
在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。
2、学情分析
小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
学生学习该内容可能的困难:
教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。
学习方式:
充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。
3、教学目标
知识与技能
1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。
2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。
过程与方法
充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。
情感态度与价值观
培养学生的抽象、概括、归纳的思维能力和应用数学的能力。
4、教学过程
1、已知导入、情境感知
师:(出示教室场景图)同学们看,这个地方熟悉吗?
生:熟悉
师:是哪?
生:我们的教室
师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。
生:我知道了,讲台的长度、课桌的长度有1米多。
生:我知道讲台的长度跟1米差不多。
生:可以用重叠法
生:可以把黑板的高度那里,对直画一根虚线下来,再看
师:课桌的长度是1米多,具体多多少呢?你有办法吗?
2、展开,认识一位小数的意义
生:先测量出1米,多余的部分截取下来,再接着去测量。
师:谁还来说说......
生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。
师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)
生:是的。
师:接下来,谁有办法?
生:用多余部分去比,看看1米里面有几个那么长。
生:将1米平均分成10份,再比较。
师:比不出来啊,谁有办法?
生:1个1个去比,看看几个那么长正好是1米。就用除法解决。
师:是这样的吗?(课件演示)
生:是的
师:我们一起来数数
生:1个,2个,3个......正好10个这么长是1米。
(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。
师:那现在知道怎么具体表示了吗?说说我们刚才的思路。
生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。
生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。
生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。
师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。
师:这就是我们这节课要研究的“小数的意义”(板书课题)
师:那你们知道小数0.1的意义了吗?
生:0.1表示的是十分之一。
师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。
生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)
师:那0.3里面有几个0.1呢?表示什么
生:0.3里面有3个0.表示十分之三。
师:还找到了其他的小数吗?
生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1
师:那1米里面有多少个0.1呢?
生:1米里面有10个0.1米
师:10个0.1是1
仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?
生:这些小数都表示十分之几。
生:这些分数的分母都是10,小数都是一位小数
生:分母是10的分数可以写成一起小数
生:10个0.1是1
师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。
我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。
师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?
(出示数轴图)你能在这里找到小数吗?
生:能(学生上台寻找并说明理由。)
师:为什么是这里呢?
生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。
生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......
师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。
师:那你能找到0.8吗?
生:某一个点,某一个范围(指出0.8的具体位置)
师:你是怎么找到0.8的?
生:数8个0.1(10份中数出其中的8份)
生:从1开始往左边数2个0.1(10-2=8)
师:那数轴上还有其他的小数吗?
生:有,学生说小数
师:如果将数轴无限的延长,这样的小数说得完吗?
生:说不完。
师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。
3、推进,认识两位小数的意义
师:课桌的长度已经具体的表示出来了,黑板的高度呢?
生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。
师:遇到了什么问题?
生:测量时,多余的部分不够1米,
生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。
师:那怎么办?
生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。
师:(课件演示)我们发现......
生:我们发现10个紫色部分的长度就是蓝色部分
生:把蓝色部分平均分成10份,紫色部分是其中的1份
生:是1厘米
师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?
生:有100个这样的紫色部分。
生:还可以用0.01米表示。
师:对的,1/100米写成小数是0.01米。
师:那红色部分有多少个0.01米蓝色部分呢?
生:1米里面有100个0.01米。1分米里面有10个0.01米
师:那这样的4份呢?可以怎么表示?
生:4/100米,写成小数0.04米
师:请同学们拿出抽屉中的软尺。
师:这根软尺长度是多少?
生:1米、10分米、100厘米、1000毫米。
师:看来长度单位的换算学的很好哦。
操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。
学生汇报
生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。
生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。
生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。
生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。
生:它们表示的长度是一样的,但是它们表示的意义是不同的。
师:仔细观察这些小数,你又有什么发现呢?
生:这些分数的分母都是100,小数都是两位小数
生:分母是100的分数可以写成两位小数
生:100个0.01是1
师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。
(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)
师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。
4、拓展,认识三位小数、四位小数的意义
师:(出示课件显示1毫米)这是多长?
生:1毫米
师:你是怎么知道的?
生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....
师:1米里面有多少个这样的1毫米呢?
生:1000个(1米里面有1000个1毫米),因为1米=1000毫米
出示课件
师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?
生:1/1000米,0.001米。
师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。
师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?
生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米
生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。
生:1厘米也可以用分数百分之一米表示,用小数0.01表示。
师:也就是说10个0.001等于1个0.01。
师:观察这些小数,你发现了什么
生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。
5、总结及应用
(观察板书可以知道)
分母是10.100.1000......的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......
每相邻两个计数单位之间的进率是(10)
生:因为我们刚刚在黑板上标记了
生:进率是100
生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)
写出合适的分数和小数
说一说你的收获
生:我知道了“小数的意义”
生:我知道了分母是10.100.1000......这样的分数可以写成小数
生:我知道了小数的计数单位
......
是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。
板书设计
1米1计数单位
1/10米=0.1米十分之一0.1一位小数
1/100米=0.01米百分之一0.01两位小数
1/1000米=0.001米千分之一0.001三位小数
1/10000米=0.0001米万分之一0.0001四位小数
朝花夕拾封面设计意义篇二
1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。
2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。
3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。
体会小数的意义。
课件
一、情境导入:
(两个小朋友在量课画面的长和宽。长5分米,宽4分米。)
板书:5分米4分米
二、新知探索:
(一)认识整数部分是0的小数。
师:5分米是几分之几米?你能说说你是怎么想的吗?
那4分米呢?
师:5/10、4/10这样的数,我们称为分数,那5和4是什么数?表示物体个数的数1、2、3、4……我们称为自然数,0也是自然数,它们都是整数。
板书:分数、整数
今天我们要认识另一种数。板书:小数。
1、告诉:5/10米可以用小数0.5米来表示。
请仔细看0.5米怎么写,板书:0.5米
你觉得在书写的时候要注意什么?它读作:零点五。板书:零点五
(估计好读哦同学已经会读了,指名读一读,再一起读。)
想一想,4/10米用小数表示是多少?
讲述:今天我们要学习“小数的意义和读写”。
板书:小数的意义和读写
引导学生发现:分数十分之几可以写成小数零点几;小数零点几就表示十分之几。
2、完成“想想做做”第一题:在括号里填上合适的数。
“1分米”用分数怎么表示?小数呢?你能像这样把余下的括号填完吗?全班交流。
3、完成“想想做做”第3题。
你能利用分数和小数的关系来完成“想想做做”第3题吗?
学生独立完成。全班交流。
讲述:小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。
4、说说你在哪些地方见过小数?(汽车的排量、视力、铅笔芯的规格……)
(二)认识整数部分不是0的小数。
2、课件出示:圆珠笔1元2角笔记本3元5角
你知道了什么?
你能用小数表示出圆珠笔和笔记本各是多少元吗?
学生独立思考,再在小组中合作交流。
全班交流,教师相机板书:
1元2角2角是2/10元0.2元1.2元读作:一点二
3元5角5角是5/10元0.5元3.5元读作:3点五
小结:几元几角分成两部分:几元和几角,先把几角表示成“零点几元”,再和几元合起来是几点几元。
三、练习巩固:
1、“想想做做”第二题:商店里有很多食品,你能用“元”作单位来表示它们的价格吗?
学生独立完成。全班交流。
2、“想想做做”第四题:先读一读各小数,再说说每种文具的价格各是几元几角.
(1)一起读题,指名说说本题的要求与第二题有什么不同。
(2)读一读文具的价格。(3)学生独立完成,同桌交流。
(4)全班交流:
3讨论:小数有什么特点?
看看这些小数,你觉得它有什么特点?
告诉:小数中间的点称为“小数点”,小数点的左边是整数部分,右边是小数部分。
4、“想想做做”第五题。
(1)提问:为什么0右边第1个点上填0.1?1右边第二个点上填1.2?(2)学生独立填写.(3)全班校对.
师:小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。
三:在以有的基础进行拓展训练
1、排列0.81.20.93.12.5你能给这些小数从大到小排列吗?
2、解决问题
一条红丝带长3.2米,一条黄丝带长1.7米,红丝带和黄丝带一共多少米?
四板书设计:小数的意义与读写
朝花夕拾封面设计意义篇三
知识与技能:理解百分数的意义,掌握百分数的读法、写法。
过程与方法:通过交流、讨论、辨析等教学活动,培养学生独立思考、抽象概括的能力,深刻理解百分数与分数的联系和区别。
情感态度与价值观:养成生敢于提问、善于质疑的学习态度、
教学重点:能理解百分数的意义。
教学难点:理解百分数与分数的联系与区别。
(一)情景导入
提问:天气越来越冷,老师想去买一套保暖内衣,在商场里选了这样两套衣服。在看了合格证以后发现这样一些信息,请你来帮老师选一选,买哪一套比较好?(出示课件)
明确:100%棉表示这件衣服是全棉的,65.5%棉表示这件衣服含有65.5%的棉。
(二)新课教学
1、提问:你还在什么地方见过上面这样的数?举例说一说。老师这里也收集了几个这样的数。
总结:像刚才这样的数,都叫做百分数,也叫百分率或百分比。其中的“%”叫做百分号。
2、理解意义
提问:所有的百分数都可以这样表示吗?这个百分数表示什么?
明确:已经复制的文件容量占所要复制的文件容量的14/100。
提问:那么没有复制的文件容量占所要复制的文件容量的多少?(86%)表示什么?
提问:你能用这样的形式表示收集到的百分数吗?同桌之间互相说一说(讨论)。
总结:百分数表示一个数是另一个数的百分之几。
3、百分数与分数的联系和区别
课件出示题目:下面哪几个分数可以用百分数来表示?哪几个不能?说说为什么。
学生讨论75%、50%各表示什么意义。
总结:分数既能表示一个数是另一个数的几分之几,也可以表示具体量。百分数只能表示一个数是另一个数的百分之几,不能表示具体量。
(三)巩固练习
练习:猜盐水的`浓度。
(四)小结作业
学习这节课之后,你有什么收获?谁能和大家分享分享?
(四)板书设计
百分数的意义和读写
(五)教学反思
朝花夕拾封面设计意义篇四
实验小学蔡洁
教学资料:人教版小学数学五年级下册《分数的意义》(60—62页)。教学目标:
1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。
2、透过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。
3、透过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。
教学重点:学生理解分数的意义和分数单位,弄懂单位“1”。
教学难点:理解单位“1”的含义
教具准备:三个装有不一样数量小棒的盒子。
学具准备:每人准备四张彩纸剪成的圆或规则的四边形、剪刀、水彩笔等。
教学过程:
一、导入:回顾旧知,引入新课(2分钟)
出示:1/32/57/10
师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。此刻让我们一齐把这三个分数读出来。(生齐读)
师:同学们,除了会读,还记得哪些分数的知识?
(生汇报)
师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。
(教师板书课题:分数的意义)
二、交流预习,明确任务(3分钟)
师:老师明白我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的宝藏。不明白你们在昨日的预习中挖出了什么宝贝?先让我们来交流一下预习状况。或说出你收获了哪些知识,或提出需要进一步探究的问题。
(学生汇报,教师适当提炼板书)
师:大家真的用心预习了,找出了本课的知识点。下方就让我们来深入地学习。
三、新授:自主学习、探究新知(20分钟)
1.联系实际,了解分数的产生、发展
(学生观察,交流)
师:同学们看到了,生活中处处有分数。然而,我们这天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下。
出示图1:世界上最早的分数是在3000多年前古埃及出现的。我们看,明白这表示的是哪个分数吗?(生答)对,1/4,人们借助圆来表示分子是1的分数。
出示图2:你认为这个分数是多少?(3/5)这是我国多年前,用算筹来表示的分数。这是有考证的。1975年底在湖北云梦县秦代墓葬中出土了大批竹简,上方就记录了一些这样的分数,表现得整齐划一,这批竹简最早的是公元前359年的,最晚的是秦始皇统一十二年的,算到这天大约2360年。
出示图3:这是之后印度用数字表示的分数。这个分数是什么?(3/4)
出示图4:到公元12世纪,距此刻大约800多年,阿拉伯人发明了分数线。这种分数就延续至今。这个分数也是?(生答:3/4。师板书)
2。感知3/4,理解分数意义
师:此刻我们就来看3/4。老师让大家准备一个学具,剪一个我们所学的平面图形,大家把它拿出来。你能找出你手中图形的3/4吗?自我动手试一试。
(1)学生独立尝试剪。
(2)学生汇报剪的方法。(强调:平均分谁是谁的3/4。)
(3)归纳分数的意义。师:大家都是这样剪的吗?举起来互相看一看。如果要表示3/5、3/6怎样办呢?(生回答)这就告诉我们分数是表示什么的?(生齐答,师板书:把一个物体平均分成若干份,表示这样的一份或几份的数,叫做分数)
(4)阅读教材61页,画出分数的概念,读一读。
3。合作探究,理解单位“1”
师:同学们,看到书中的概念,你们对老师整理的概念有异议吗?
(师生交流,提出“一些物体”也是一个整体的问题。)
师:一些物体能看成一个整体吗?让我们拿出小组内准备的三张饼,这次小组合作,要剪出三张饼的3/4,该怎样办呢?让我们一齐探究剪的方法。
(1)小组合作,探究方法。
(2)全班汇报剪的方法,师演示剪的过程。
(3)明确单位“1”:我们把三张饼当成一个整体来分,也能够把一些物体当成一个整体来分,这一个整体能够用自然数“1”来表示,这就是我们所说的单位“1”。
(4)说一说你想把什么作为单位“1”来分一分?(生举例)
(5)完善分数的概念
(师板书:把“一个物体”换成“单位1”)
4。弄清分数单位
(老师出示线段图:一条线段平均分成7分。)
(2)学生再与文本对话,画出概念,同桌互相说说分数单位的意义。
(3)说出3/4的分数单位是多少?课前复习的几个分数的单位分别是多少?
四、练习:深化理解,回归生活(12分钟)
1。独立完成练习十一第4题,然后全班交流。
2.游戏:
师:同学们,喜欢游戏吧?也喜欢挑战吧?下方让我们在游戏中理解挑战,看看同学们对分数的意义是否有更深入的理解。
(拿出三个盒子,第一个盒子里装5根小棒,第二个盒子里装10根小棒,第三个盒子里装15根小棒。老师抽出小棒,学生猜分数或盒子中小棒的数量。)
3。共同完成练习十一第7、6题
师:分数很搞笑吧?分数在我身边比比皆是,看64页的第7题带给给我们的信息就是我们生活中的分数。一齐开看。
(生默读信息,举手交流)
师:生活中你还见过那些分数?把你搜集的分数和同学们说说。(可留为实践作业,进一步体会分数的意义。)
五、布置作业,巩固提高(0。5分钟)
练习十一的5、8、9题
六、全课总结,感受收获。(2。5分钟)
这节课,我们一齐学习了分数的意义,你在本节课学习中都有哪些收获?
(生汇报)
同学们这节课表现得都很棒,收获也很多,表扬自我一下吧。
假设一只手的五根手指一样长,
请你拿出一只手手指的五分之一来评价一下自我的表现。(第一,最棒)
请你拿出一只手手指的五分之二来庆祝一下自我的收获。(成功,耶)
请你拿出一只手手指的五分之三来表示你是否同意下课。(ok,ol)
板书设计:分数的意义
分数的产生
3/4分数的意义:把单位“1”平均分成若干份,表示
这样的一份或几份的数,叫做分数
单位“1”:一个整体(一个物体、一些物体)
1/4分数单位
朝花夕拾封面设计意义篇五
小数的意义和产生,课本50—51页内容。
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
小数的意义和计算单位及进率
一、知识链接
1/、谈话引入:
我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。
二、探究新知。
1、探究活动:
认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。
温馨提示:
(1)能你测量课桌的长度和宽度吗?测量时发现了什么?
(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?
(3)、你能用小数表示分母是10的分数吗?
(4)、你能用小数表示分母是100的分数吗?
(5)、你能用小数表示分母是1000的分数吗?
(6)、什么是小数,小数的计数单位是什么。
(7)、每相邻两个计数单位之间的进率是多少。
(8)、小数的'计算单位和分数的计数单位有什么不同之处。
2、我会总结:
(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
(2)、每相邻两个计数单位之间的进率是()。
3、解决问题:
(1)0.457,每个数位上的数各表示几个几分之一?
(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()
1、判断:
(1)0.40里面有4个0.01()(2)35克=0.35千克()
2、把小数改写成分数
3、括号里能填几?你是怎么知道的?
(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。
(3)、找朋友:(用线把上下两组数连起来)
0.0450.130.00010.9
这节课我们学习了什么?你知道了什么?你还有什么问题?
朝花夕拾封面设计意义篇六
教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。
1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。
2、培养学生的理解空间想象能力。
3、训练学生思维的灵活性。
小数的意义及小数与分数的联系。
多媒体课件
一、复习。
用分数表示下面的数。
1角=()元,1分米=()米。
2角=()元,1厘米=()米。
1分=()元,1毫米=()米。
二、教学例。
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的'单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。
(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05读作:零点零五;0.48读作:零点四八。
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
(学生根据三年级的知识,完全可以回答出第一个问题。)
0.05元是1元的百分之五。提问:为什么:
(根据学生的回答情况,可以作如下的引导。)
思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。
根据上面的思路,让学生说明0.48元是1元的。
学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。
观察板书:
你发现了什么?
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
a、理解:1厘米是米,米可以写成0.01米。
指名理解1厘米为什么是米。
(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)
b、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
c、观察板书:
这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数)
我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)
三、数形结合,建立小数的概念。
1、出示例2:
把什么看作“1”?(正方形)
看着图形将和写成小数。学生自主填空后回答。
提问:0.1表示什么?0.01又表示什么?
朝花夕拾封面设计意义篇七
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.
3,让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的'意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
:课件,天平,实物若干等
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
朝花夕拾封面设计意义篇八
反比例。(教材第47页例2)。
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
投影仪。
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2。归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
学生探讨后得出结果。
x×y=k(一定)
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的`质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:5010012
说一说成反比例关系的量的变化特征。
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
朝花夕拾封面设计意义篇九
1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的.意义吗?(学生回答)
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)
>
(一)数的比例
课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)
(二)形的比例
出示两个具有放大关系的三角形
师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)
(三)生活中的比例
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本41页第3题(学生独立完成,小组订正交流。)
2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)
师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。