无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
分式的约分教学设计篇一
“通分”一课的教学目标是让学生理解通分的意义和掌握通分的方法。它是分数基本性质的一种应用,是在学生已经掌握了分数的基本性质和求几个数的最小公倍数的基础上进行教学的,它为后面学习比较异分母分数大小和计算异分母分数加减法的奠定基础。
1、开门见山,出示例题。让学生读题理解,明确要求。
2、让学生自己确定分母,利用分数的基本性质进行改写。
3、集体交流。
4、介绍同分母分数,异分母分数,通分,公分母的概念。
5、明确通分的方法,寻找两个分母的最小公倍数。
通分的方法其实不难,关键是让学生理解为什么要通分和通分的方法,通分一般采用什么方法是在学生自主探究、交流合作、争论辩解的氛围中明确的,让学生大胆猜测,大胆设想,在此过程中,引导学生进行比较归纳。所以,如果我们在数学课堂教学中经常注视培养学生的思维能力,当学生的思维受阻时,教师适时点拨,当学生的思维遇卡时,教师巧妙催化,这样会使学生在题中数量间自由地顺逆回环,导致学生发散思维能力的形成,以有利于培养学生的创新思维。
尽管在设计教学的各个环节时,我试图以学生为主体,让学生在合作交流中自主探索。但在实际教学中,我仍然一步步在引导学生:引导学生把这些分数转化成同分母或同分子的分数;引导他们找出公分母可以是几。生怕他们会偏离我的教学设计之外。因此,在一定程度上束缚了学生的思维。其实教师只需提醒学生一句,遇到分子分母都不相同的情况时,可以转化成以前学过的知识来解决,然后完全放手,让学生自由探索各种比较的方法,这样才能真正激活学生的思维火花,开启他们智慧的闸门。
在练习题的设计上,我努力设计成不同层次的几种类型。但最后由于时间紧张,练习做得不够扎实。其实作业完不成,完全可以放在课下,而不应追求形式上的完整。
总之,通过对这节课的教学,使我感悟到:老师应重视引导学生自主探索,合作学习,让学生积极地参与学习的'全过程,探索数学规律,真正成为学习的主人。而作为教师,除了自身的业务素质和能力外,还应着重在教材和学生身上多花些时间进行钻研。力求每节课,都能使学生有所提高。
分式的约分教学设计篇二
(1)本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
(2)是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
(3)是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
(3)忽略了例题的示范性和板书的清晰、条理性。
(4)课堂准备还可以再充分一些
分式的约分教学设计篇三
本节课是在学生学习了求两个数的最小公倍数基础上进行教学的,同时也是分数基本性质的.直接应用。
成功之处:
1.注重渗透数学思想方法,应用转化思想解决问题。在例4的教学中,当学生发现分子、分母都不相同的分数,怎样比较大小?学生一般会想到两种思路:化成同分子分数比较;化成同分母分数比较。实际上这两种思路都是应用转化思想,都是把未知的问题转化为已知的问题,利于学生利用已有知识经验解决问题。
2.注重多种方法解决问题,培养学生的思维灵活能力。在教学中学生出现了如下解题思路:
(1)化成同分母分数比较:
2/5=2×4/5×4=8/20
1/4=1×5/5×4=5/20
8/20>5/202/5>1/4
(2)化成同分子分数比较:
1/4=1×2/2×4=2/8
2/5>2/82/5>1/4
(3)推理法:
1-2/5=3/51-1/4=3/4
3/5<3/42/5>1/4
(4)把分数化成小数的方法:
2/5=0.41/4=0.25
0.4>0.252/5>1/4
不足之处:
1.学生在通分中比较大小,但是在做练习时出现了不需要比较大小却要比较大小的现象,学生认为只要通分,就比较大小,不管题目的要求。
2.部分学生还是不能用最小公倍数做公分母。
再教设计:
加强对题目的审题,减少不必要的失误。
分式的约分教学设计篇四
结合本堂课的教学,我感觉本堂课的亮点之处有以下几点:
(1)重视新旧知识的衔接。
本节课是通分的第二课时,是特殊分母的`通分(分母存在于倍数关系、互质关系),相当于是对通分知识规律的发现与运用。所以,上课伊始我复习两组通分,重点引导学生说一说通分的关键是什么?是怎样通分的?为探究新知做一铺垫。
(2)注重让学生经历探究----合作---交流---归纳---验证的活动过程。
由于是通分的第二课时,我放手学生自主学习,经历小组合作、全班交流得出分母存在这两种关系,得出寻找公分母的方法时,分别让学生进行了验证。在这一系列的思维活动中。充分展现学生的思维轨迹,有效培养了学生的创新意识。
(3)渗透数学思想、培养自学能力。
我认为,在数学教学中,教给学生学习的方法是教学的一项重要任务。所以在本节课教学中,我把“教学中渗透转化的数学思想,培养学生的自学能力,提高学生的数学素养”作为一个教学目标,并较好地完成了这一目标。
分式的约分教学设计篇五
分式是有理式的一个重要组成部分。在整式的概念、变形、四则运算及因式分解的基础上,进一步学习分式,它既是对整式的运用和巩固,也是对整式的延伸。分式的学习则需要类比分数的概念性质、运算法则等知识来完成。
在这一章的教学中,我首先从实际问题出发,类比分数,引出分式的概念;其次类比分数的基本性质和四则运算,学习相应分式的基本性质和四则运算;再次学习可化为一元一次方程的分式方程的求解;最后引入整数指数幂,把分式与负整数指数幂的互化有机地联系起来,同时又把科学记数法推广到绝对值小于1的数的表示。
结合学生的学习反馈,我认为在教学中应注意以下几个问题:
1.类比分数的概念性质,如分母不为零、零除以任何不为零的数都得零、一个数除以它本身都得1(零除外)、分子分母同号为正、异号为负等,可以帮助学生正确理解当分式中字母取何值时,分式有意义、分式无意义、分式值为零、分式值为1、分式值为正、分式值为负。
2.在进行分式的运算时,要强调运算顺序,要让学生体会到在运算的过程中,凡遇多项式要先因式分解再约分或通分,最后结果必须化为最简分式或整式。
3.在将分式方程化为整式方程求解的过程中,要渗透“转化思想”,要让学生知道可能产生增根,从而使学生认识到检验的目的和必要性。
4.学生容易出现提取负号后,括号里面各项不全变号的错误;容易将分式方程去分母的方法挪用到分式计算中去,出现随意去分母的错误等。
总的来说,联系旧知,对比新知,及时发现和纠正学生的错误,可以使分式的学习顺利进行。
分式的约分教学设计篇六
“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据。备课过程中我发现这部分知识比较容易理解,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
整节课我设计了五个部分:
1、由生活引入,激发学习兴趣。
2、动手操作,形象感知。
3、观察比较,探究规律。
4、运用规律,自学例题。
5、拓展与延伸。从课的开始,用学生身边的事情引入,大大提高了学生学习的积极性,一下子把学生吸引住了。
再通过学生自己动手折纸操作,不断猜想,不断验证,再猜想,验证,学生的自信心就会大增。我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
反思这节课的教学,我想在验证、交流环节学生们参与率需要提高,尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。还可以给每生准备一份练习纸,这样能确保每位学生的练习量。
文档为doc格式
分式的约分教学设计篇七
本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一。其中,分式加减运算是本节课的重点,异分母的分式加减是本节课的难点,而异分母的分式加减运算是本节课的难点。而异分母的分式加减运算可以转化到同分母的分式加减运算中,因此,掌握好同分母的分式加减运算是关键,本人从以下几方面作反思:
(1)成功之处
本课从实际问题引入,让学生直接感受到实际生活中会碰到分式的加减运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。
由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算的法则,通过类比的思想方法,由数的运算引出式的运算规律,体现数学知识由具体到抽象,从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生学习的积极性。而后,同样利用类比方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,而且通过通分将异分母的分式加减转化为同分母的分式加减运算上,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识掌握比较好,知识已落实到位。
(2)不足之处
本课出现了有头无尾的情况,前后呼应还没做到位,没有解决引例中“ 分式的加减教学反思”如何计算这个问题,这是本节课的一个最大的遗憾。课堂教学真的是“一门缺憾的艺术”正是有着这样或那样的缺憾,才使我们更有动力的在探索地道路上大步前行。
一节数学课,经过反思,会发现许多值得推敲的地方,会发觉好多细节的地方需要精心设计,在反思中,能提升自己的认识,为以后的教学积累宝贵的经验,让自己更贴近学生。
分式的约分教学设计篇八
该节内容属于北师大版八年级数学下册第三章《分式》,本节主要讨论分式的加减法运算法则。
为了完成教学目标,首先通过行程问题引入分式的加减运算,让学生感受到数学和生活的联系,加强学习分式加减法的必要性。既体现了加减运算的意义,又让学生经历了从实际问题建立分式模型的过程,发展学生有条理的思考及代数表达能力。
为了突出重点从简单的情况入手,低起点,顺应着学生的认知过程,递进式的设置台阶,使学生利用类比的方法自然获得同分母分式加减运算的法则。在此基础上,引导学生探索异分母分式的加减运算,得到异分母分式加减法运算的法则。同时,让学生尝试用式子表述法则,培养他们的表达能力。在运用法则的环节上,无论是例题还是练习都以学生为中心,给学生充分的时间去运算,去暴露问题,不拘泥于形式的讨论、合作,可以发现学生不同的思路,锻炼和培养他们的发散思维能力,为后面的教学提供较好的对比分析材料,使学生留下深刻的印象。
1。初步完成了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从分数加减法法则类比出分式的加减法法则,同时引导了学生把一个实际问题数学化。
2。以讨论的形式呈现给学生例题,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,通过分析题目的显著特点,来灵活运用方法技巧解决问题。
3。是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握更为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
4。创造性的使用教材,教材只是为我们提供最基本的教学素材,完全可以根据学生的实际情况进行适当调整。由易到难,实在不行,再讲一节习题课,夯实基础。否则后面的分式应用题很难突破。
5。在小组讨论时,应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应多注意对困难学生的帮助。
分式的约分教学设计篇九
解分式方程的思想是将分式方程转化为整式方程,验根是解分式方程必不可少的步骤。分式方程又是解决实际问题的工具之一。
教学设计中蕴涵的数学思想和数学方法:《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。
教学目标:
1.了解分式方程的概念,和产生增根的原因。
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
重点、难点
1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
3.认知难点与突破方法
解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。
要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。