教案的执行需要教师与学生的积极配合和互动。高中教案范文的分享可以激发教师的教学创新和教学热情,提高教学质量。
长方体和正方体的表面积的教案设计篇一
教学目标:
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点难点:长方体和正方体表面积的含义及其计算方法的推导过程。
教学准备:长方体、正方体模型。
教学过程:
>>>
做练习四第三、四题。
长方体和正方体的表面积的教案设计篇二
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
1、口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
2、说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)
1、长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的'大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2、长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)
(图像要验证相对的面相等,展示每个面对应的长和宽。)
教师:想一想,长方体的表面积如何计算?
学生讨论后归纳,老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
学生口答老师板书:(或学生板书,同时其余同学填书上。)
解法1:6×5×2+6×4×2+5×4×2
=60+48+40
=148(厘米2)
解法2:(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(厘米2)
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。列式:
3、正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
学生:一个面的面积乘以6。
教师:用棱长来表示它的表面积。
学生:棱长×棱长×6
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6
=9×6
=54(厘米2)
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)
用学生投影片集体订正。
1、口答课本p27:1。
2、计算课本p27:2。(各请两位同学用投影片写,集体订正。)
3、口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()
(四)课堂总结及课后作业
1、什么是长、正方体的表面积。长、正方体的表面积如何计算。
2、作业:课本p27:3,4,5。
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
第一部分教学长、正方体表面积的意义。
第二部分教学长方体表面积的计算方法。
第三部分教学正方体表面积的计算方法。
长方体和正方体的表面积的教案设计篇三
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
(一)引导学生学习正方体表面积的计算方法:
3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
(有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。
1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3、教学例3
1、鱼缸缺少哪个面的玻璃?(上面)
2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的.两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽x高前面=长x高底面=长x宽)
3、指名学生板演,集体订正。
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
书p42页练习二的第一、二题。
(要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
课后反思:
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。
改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。
教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。
长方体和正方体的表面积的教案设计篇四
教材第23~24页,以及第25~26页练习六第1、2、3、4、6、7题。
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
掌握长方体和正方体表面积的意义。
学会长方体和正方体表面积的计算方法。
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的`特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
长方体和正方体的表面积的教案设计篇五
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?
师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的'表面积)
师:要求出长方体或正方体的表面积,你觉得要知道什么?
1、教学长方体的表面积
教师出示长方体透视图。
长方体有几个面?每个面是什么形状?面与面有什么特点?
说说各个面的长与宽。
提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?
出示例1
学生读题,找出条件和问题。
提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)
那我们可以怎么想呢?
引导学生列出算式:8×5×2+8×4×2+5×4×2
提问:8×5×2、8×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(8×5+8×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)
提问:哪一种方法更简便?(第二种)
教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
完成练一练第1题。
你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。
2、立方体表面积计算
独立完成试一试,说说立方体表面积计算方法是怎样的?
完成练一练
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
作业本
2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是( )平方厘米。
长方体和正方体的表面积的教案设计篇六
长方体的表面积
1、在操作、观察活动中,探索并理解长方体的表面积及其计算方法,并能正确计算。
2、丰富对现实空间的认识,发展初步的空间观念。
3、结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
探索理解长方体的表面积及其计算方法,并能正确计算。
正确建立表面积的概念。
学生每人准备长方体盒子一个,直尺,铅笔。
一、复习旧知、有效铺垫
师:最近我们新认识了长方体,你还记得长方体的特征吗?(重点板书:长方体6个面)(前—后,左—右,上—下)
二、寻找联系
引入新知
1、同学们手中也有一个相同的长方体,你能在它的表面上对应六个面标出上下左右前后六个面吗?(试一试,并指名指一指)
2、同学们手中的纸盒是我刚买回来准备装小礼物用的,那么他们厂家做这样一个纸盒至少需要多少面积的.硬纸板呢?求至少需要多少面积的纸板其实就是求什么?(所有面的面积之和)长方体6个面的面积之和其实就是----长方体的表面积。(课件展示)板书:长方体的表面积。
4.想要知道所有面的面积和,首先我们要计算出----(每个面的面积)。你们准确找到每个面的长和宽吗?先自己尝试独立说一说。开始。
6.谁能到前面来说一说?老师帮帮你。这是前面长方形的长,这是宽。下面和上面相同。这是左面长方形的长,这是宽。谁能到前面再来说一次。
7.其实啊,这六个面的长和宽与长方体的长宽高有着奇妙的关系,我很想知道哪个小组能最先找到,找到了请马上坐好。预备,开始!谁能到前面来说说?后面和前面?是一样的。(说左面和上面都会提示对面)
8.看来大家的空间感都很强!嗯,现在我像昨天一样把长方体展开,现在大家来看大屏幕,这是这个长方体纸盒的展开图,谁能结合这个展开图再来说一说,每个面的长和宽与长方体长宽高的关系。(展开图上标出上下左右前后)
9.那大家现在可以计算出制作这个纸盒至少需要多少硬纸板吗?要想求长方体的表面积,必须还要知道长方体的什么?知道长方体的长宽高。我们现在不知道手中这个长方体的长宽高,怎么办?测量。对,现在同桌两个人合作,测量出长方体的长宽高,并用铅笔标到盒子上。测量并记录结束请马上做好。
10.谁来说说你们的测量结果?长12厘米,宽6厘米,高4厘米.和他测量的数据相同的请举手,嗯,大家测量得真准确。知道了长宽高,那我们现在就,动手来计算一下,制作这个长方体纸盒至少需要多少面积的硬纸板,注意计算过程中要准确。开始。
11、大家算出来了吗?小组内交流一下,说一说你为什么这么列式。
12、全班交流与汇报。(找到不同类型的方法,写黑板上。)这是我看到两个同学的不同方法,和这个同学方法相同的请举手,谁能说说你是怎么想,为什么这样列式。
谁和这个同学的方法相同,你又是怎么想的?谁能来说说你的想法?
13、根据孩子们的列式,进行总结。
方法一:6个面面积相加
方法二:计算3个面的面积×2,依据相对的面的面积相等的特点。
方法三:计算三对面的面积再相加
14、这几种方法,哪种比较简便?谁能根据这个式子能说说长方体的表面积公式等于长方体的表面积=(长x宽+长x高+宽x高)x2要想求长方体的表面积,必须要知道长方体的什么?知道长方体的长宽高。
四、巩固练习
1、洗衣机厂家想要定包装箱,想请我们帮忙算出一个包装箱至少需要多少硬纸板,大家一定要算仔细,可不能给厂家算错了。看大屏幕。出示课本第17页练一练第二题,引导学生完成。
2、课本17页第5题。
独立完成,集体纠正。
五、总结:今天大家有什么收获?
长方体和正方体的表面积的教案设计篇七
义务教育教科书人教版教材五年级下册第三单元第三课时。
1、认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。
2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。
3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。
认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。
应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。
长方体、正方体的纸盒,长方体和正方体的展开图。
1、课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)
2、长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。
1、认识长方体和正方体的展开图。
(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。
(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。
2、教学长方体表面积的计算方法。
(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?
(2)汇报:
六个面加起来;相对的面只算一个再乘2;(长×宽+长×高+宽×高)×2;你喜欢哪种方法?为什么?总结公式:长方体的表面积=(长×宽+长×高+宽×高)×2;通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。
其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)
3、教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?
1、按要求计算各长方体各个面的面积和表面积。
(1)全图
(2)半图
3、p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。
这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。
长方体和正方体的表面积的教案设计篇八
二、学生小组合作探究。
如果你们小组有困难可以参考合作提示:
1、讨论,要求需要多少彩纸就是要求什么?
2、怎样求,列出算式,想想,还有不同的方法吗?
3、结合生活实际想想还需要考虑什么问题?
三、交流,汇报
四、小结,提升
1、师:要求需要多少彩纸就是要求什么?
每个物体都有表面和表面积,长方体的表面积是指长方体几个面积的总面积?长方体6个面的总面积,叫做它的表面积。
2、 师:真能干!把长方体或正方体纸盒的表面展开,看一看得到的是什么图形?把组合图形恢复到原来的长方体和正方体。(课件演示展开、复原全过程)
3、汇总小结长方体表面积计算方法
师:计算长方体的表面积必须知道哪些条件?
学生回答后逐步小结完整:
上面、下面长方形的长和宽相当于长方体的长和宽。
前面、后面长方体的长和宽相当于长方体的长和高。
左面、右面长方体的长和宽相当长长方体的宽和高。
用长×宽×2+长×宽×2+宽×高×2来计算长方体的表面积。
用(长×宽+长×高+宽×高)×2来计算长方体的表面积简便些。
4、在实际生活中我们还需要考虑粘贴部分问题
五、简单应用
一个长方体长5分米,宽4分米,高3分米求这个长方体的表面积
六、拓展
1、课件演示,将刚才的长方体抽拉成正方体
2、学生尝试计算
3、小结,
师:求正方体表面积都必须知道什么条件?
“5×5”表示正方体一个面的面积。而正方体六个面面积都相等,所以求出一个面的面积后,乘6就得到了正方体的表面积。
师:谁来说说计算正方体的表面积的方法?
七、应用知识,解决问题
1、口答:一个正方体的棱长是2厘米,表面积是多少平方厘米?
长方体和正方体的表面积的教案设计篇九
《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
一、创设情境,以“争”激思
新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
二、实践操作,以“动” 激思
数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的12个面中选取相应的面拼成长方体,学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后再让学生测出拼成的长方体的长、宽、高,通过小组合作共同探索出长方体表面积的计算方法。
三、巧编习题,以“练”促思。
在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,以选择题的形式出现,学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。
本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,不知如何解决这样的矛盾。
长方体和正方体的表面积的教案设计篇十
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
板书设计:
长方体和正方体的表面积(一)
长方体和正方体的表面积的教案设计篇十一
人教版五年级下册p33~35页的内容
1、使学生理解长方体表面积的意义 ,
理解并掌握长方体表面积的计算方法, 能够正确地进行计算 ,
并能运用所学知识解决一些实际问题 。
2、在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3、培养学生的动手操作能力和共同研究问题的习惯。
4、通过亲身参与探索实践活动,去获得积极的成功的情感体验。
5、体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
教学重点:长方体表面积计算的基本思路和方法。
教学难点:根据长方体的长、宽、高 ,确定每个面的长、宽是多少。
师:长方体表面积展开教具。
生:用附1、附2做成的长方体、正方体盒子、剪刀、尺。
生1:什么叫长方体、正方体的表面积?
生2:怎样计算长方体、正方体的表面积?
1、分组操作,探索长方体或正方体表面积的含义、并建立它们的联系。
组织学生展示不同的展开图。
大家知道展开前长方体的每个面在展开后是哪个面吗?现在大家在没剪的那个盒子上分别用上、下、前、后、左、右标明6个面,然后与剪开的那个作个对比,在展开图上标出6个面。
师:长方全或正方体6个面的总面积叫做它的表面积。[板书课题]
2、探索长方体表面积的计算
(2)看教材上的立体图形思考后填书,全班展示不同结果。
比较上面两种解法有什么不同?它们之间有什么联系?
师:两种方法都是正确的,利用乘法分配律可以把第一种列式变成第二种,第二种方法可以命名大会计算简便些。
3、大胆猜想、动手测量、探索正方体表面积的求法
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生谈自己的计算方法。
师:利用正方体学具快速计算它的表面积。
生说想法。
1、读书质疑
师:关于长方体和正方体的表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。
2、灵活应用所学知识。
(1)测量并计算牙膏盒的表面积
师:出示长方体牙膏盒,能计算出它的表面积吗?
生:齐声回答“能!”过了一会说:不能。师:为什么?
生:因为不知道每个面的长和宽各是多少?
师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?
生:需要量出3个数据,分别是长方体的长、宽、高。
师:请拿出学具袋中的.牙膏盒,帮助工人师傅计算一下制作一个这样的牙膏盒至少需要多少纸板?生:列式(略)。
(2)测量并计算长方体药盒的表面积
师:拿出你准备的长方体药盒,计算出制作一个这样的药盒至少需要多少纸板?测量后你发现了什么?(特殊长方体)
生:我发现长方体药盒的宽和高是相等的,所以是一个特殊的长方体。 生:列式(略)。
生:列式(略)。
师:请拿出学具袋里的火柴盒,分别求出内槽和外壳的表面积。
这道题有点难,同学们可以共同研究一下解决的办法。
生:汇报计算方法(略)。
1、p36第1题,只列式,不计算。
2、p34做一做。
师:在实际生活中,有时不需要计算长方体6个面的总面积,只需要计算出其中几个面的面积。究竟要计算哪几个面的面积,需要根据具体情况而定。
学生独立列式,集体订正。
3、p36第2题
方法指导:先确定一个面做下底面,写下“下”,然后想象折叠的过程,折叠一面确定一个出它是哪面,就在此面标上相应的文字,如果定为是右面,就在此面标上“右”。最后如果能不重复不遗漏的在六个面上分别标上上、下、前、后、左、右,那么这个展示图就能折成正方体,否则就不能。如果学生想像判断困难,可让学生在纸上画出这些展开图,再剪下来,动手折一折。
师:通过这节课的学习你有什么收获?
长方体和正方体的表面积的教案设计篇十二
1、教材分析:
浙教版小学数学第十册第一单元《长方体和立方体的表面积》是本单元的第三课时。“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排“试一试”学习立方体表面积的计算方法。
关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。
2、学习者分析:
长方体和正方体的表面积这部分知识是在学生掌握了长方形与正方形的面积计算,并对长方体与正方体的特征有了初步认识的基础上进行教学的,即学生已经明确了长方体与正方体都有6个面,而且长方体相对的面的面积相等,正方体6个面的面积都相等的基础上教学的。计算长方体和正方体的表面积在生活中有广泛的应用。通过这部分内容的学习,还可以加深学生对长方体和正方体特征的的理解,发展他们的空间观念。
二、教学目标及重难点
教学目标:
1、理解长方体和正方体表面积的意义。
2、理解并掌握长方体和正方体表面积的计算方法。
3、培养和发展学生的空间观念。
教学重点:
长方体、正方体表面积的意义和计算方法。
教学难点:
确定长方体每一个面的长和宽。
三、教学设想
1、创设问题情景,激发学习欲望。
根据本课教材的特点和学生实际,新课伊始,我创设了“纸箱厂要制作一种长8分米,宽2分米,高4分米的长方体包装盒和一种棱长4分米的正方体包装盒.哪种包装盒要用的硬纸板少?”这一问题情景,接着问:“长方体和正方体的哪些地方要用硬纸板?”既激发了学生探究的兴趣,又对“长方体或正方体的表面积”这一概念建立清晰的表象,为学习表面积的计算方法做好充分准备。
2、借助教学媒体,提高学习有效性。
“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,因此在教学中尽可能丰富他们的感性认识,建立清晰的表象。我通过提问“这个长方体的表面积能一眼全看到吗?有什么办法能一眼全看到?”引导学生思考把立体图形得到平面图形。之后由多媒体电脑演示展开过程,要求学生在展开后的图形中找到“上下前后左右”6个面。强化空间观念,增加学习趣味。
在此基础上“提问”:每个面的长和宽与长方体的长、宽、高有什么关系?让学生围绕本课难点问题进行尝试解决问题,而教师只在关键处进行点拨、引导。体现学生的主体地位,培养学生独立解决问题的能力。学生通过自主探索,自己发现长方体表面积的计算方法。但由于学生的认知水平有差异,允许各类学生提出自己的方法,然后通过比较,进而到表面积计算的一般方法,这样可以有意识地结合教学内容体现思维方法,使学生认识到学数学要抓住解题关键,受到恰当的思维训练。
3、适当应用拓展,发展空间观念。
学生在上面问题的解决中都有是凭借实物来完成的,练习部分我先安排了一组判断题,在第三小题中,学生思维的常规得到打破,相对于独立物体而言的,那么对于组合物体表面积又是怎样的呢?我将更多的时间与思考空间留给了学生自己思考,让新知得到了进一步的深化。然后,第二大题安排了看数字算面积的练习,与看图算面积想比较,使学生的思维从具体形象思维向抽象逻辑思维过度。可无论是包装盒实物,还是具体图形、或只是数据的表面积计算,解决的都是 6个完整的表面积的计算,可实际生活中的也有不是6个面的表面积计算,那么对于不完整的包装面积又该如何计算?我安排了“如此题改为同样尺寸的无盖塑料盒表面积如何求?”其目的是培养学生应用知识灵活解决问题的能力,这里注重培养学生方法的发散,及解题策略的多样化和最优化,培养学生个性。最后,我考虑到学生的认识不能只停留在感知水平上,还要上升到理性认识。在聪明题中,对于组合物体的包装,我将更多的时间留给学生自己思考,他们以小组合作的方式进行比较、交流,解决问题,发现新问题,这样多方面联系,不仅注意发挥学生的主体地位,还给他们创造了合作的空间。最后引导学生根据计算结果寻找规律,“重叠面多,图形越接近立方体,表面积越小,鼓励学生进一步用这一规律解释生活中的包装现象,使学生明确:对物体进行包装时,要根据实际情况选择合适的材料,要么使包装美观大方,吸引注意,要么简单小巧,尽可能省纸。从而使学生感知,数学来源于生活,应用于生活,增强数学的应用意识。
长方体和正方体的表面积的教案设计篇十三
1.长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)
(图像要验证相对的面相等,展示每个面对应的长和宽。)
教师:想一想,长方体的表面积如何计算?
学生讨论后归纳,老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
学生口答老师板书:(或学生板书,同时其余同学填书上。)
解法1:6×5×2+6×4×2+5×4×2
=60+48+40
=148(厘米2)
解法2:(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(厘米2)
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高2
长方体和正方体的表面积的教案设计篇十四
今天举行了辅导组级数学六(上)新教材培训,按照惯例,由六年级老师上一堂研讨课,然后是进行培训活动。
张华老师执教了《长方体和正方体的表面积》一课,该课是本学期实行新的磨课形式以来的第一次校内实践课,此次采用的是渐进式磨课,先前已经过两次研讨,应该说磨课的效果还是非常不错的。小张老师的课不管是教学设计还是课件的制作,板书设计到教学的语言,练习的安排,都有了很大的进步。本节课的优点有以下几个方面:
1、充分发挥情境的作用。本课创设了包礼品盒的问题情境,至少有如下三点作用:一是激发学生兴趣,二是巧妙地引入表面积这一新内容,三是要选择哪种包装纸,就要算出表面积,使表面积的计算产生了需要。
2、充分利用直观,帮助理解。课件不是点缀课堂的“花样”,而是应发挥其作用,看本课的课件,正是用在了刀口上,哪里该用哪里不该用,都是非常的到位,充分发挥了课件的作用。
3、注重对方法的理解。对长方体表面积的计算方法,不是停留在“依葫芦画瓢”的层面上,而是注重让学生说每一步的意思,几乘几是算的哪个面,这样学生有利于把握算式与对应面的关系,对表面积的计算是做到了心中有数。
4、注重评价的方式。课中不但有教师的评价,也有学生的评价,而且评价语也不局限于“非常好”等内容,也有质性的评价。
5、练习设计合理,处理得当。练习的设计注意了层次,有针对性,处理到位,不流于形式。如选择题,选什么?为什么?其它选取项为什么不对?非常的扎实,使学生更好的掌握巩固所学知识。
当然,课中的一些细节问题需要注意:如怎样结合长、宽、高使学生更好地将算式与图形的面联系(对应)起来;怎样利用教具演示使学生理解包装纸要比长方体表面积大一些;在板演正方体表面积后评价时,应先说说算式的意思,再判断对错等。
长方体和正方体的表面积的教案设计篇十五
使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。
谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?
师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)
师:要求出长方体或正方体的表面积,你觉得要知道什么?
1、教学长方体的表面积
教师出示长方体透视图。
长方体有几个面?每个面是什么形状?面与面有什么特点?
说说各个面的长与宽。
提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?
出示例1
学生读题,找出条件和问题。
提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)
那我们可以怎么想呢?
引导学生列出算式:8×5×2+8×4×2+5×4×2
提问:8×5×2、8×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(8×5+8×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)
提问:哪一种方法更简便?(第二种)
教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
完成练一练第1题。
你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。
2、立方体表面积计算
独立完成试一试,说说立方体表面积计算方法是怎样的?
完成练一练
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
作业本
2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是()平方厘米。
长方体和正方体的表面积的教案设计篇十六
1、长方体有个顶点,有()条棱,有()个面,一般情况下()面的面积相等。
2、一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。
3、一个正方体的棱长是8分米,它的棱长总和是(),表面积是()。
4、用60厘米长的铁丝焊接成一个正方体的框架,这个正方体的表面积是()平方厘米。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的.面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米。
7、一个长方体的长是1米4分米,宽是5分米,高是5分米,这个长方体有()个面是正方形,每个面的面积是()平方分米;其余四个面是长方形的面积大小(),每个面的面积是()平方分米;这个长方体的表面积是()平方分米。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。