我在考试中遇到了一些不熟悉的题型,没有能够应对得当。接下来,小编为大家准备了一些军训总结范文,供大家参考,希望能对大家在撰写军训总结时有所帮助。
八年级数学人教版知识点总结一次函数篇一
像我们常见的等腰三角形,等边三角形,等腰梯形等都是轴对称图形。
性质
1.对称轴是一条直线。
2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。
3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
6.图形对称。
定理及其逆定理
定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
生活作用
1、为了美观,比如天安门,对称就显的美观漂亮;
2、保持平衡,比如飞机的两翼;
3、特殊工作的需要,比如五角星,剪纸。
例如圆和正多边形也都是轴对称图形。
八年级数学人教版知识点总结一次函数篇二
分式的运算法则包括了约分、分式的加减乘法法则和异分母分式的加减法法则这三大要领。
1.约分:
把一个分式的分子和分母的公因式约去的过程为约分。
2.分式的乘法法则:
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.异分母分式的加减法法则:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
初中学的分式内容其实很简单,如x/y是分式,还有x(y+2)/y也是分式,计算的要求也不高。
八年级数学人教版知识点总结一次函数篇三
1、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2、通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形、约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分、
3、求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
1、分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2、分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4、分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5、对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
八年级数学人教版知识点总结一次函数篇四
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
由一个平面图形得到它的轴对称图形叫做轴对称变换。
等腰三角形的性质:
等腰三角形的两个底角相等。(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
有一个角是60°的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
八年级数学人教版知识点总结一次函数篇五
回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
八年级数学人教版知识点总结一次函数篇六
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
菱形:一组邻边相等的平行四边形?(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形:有一个内角是直角的平行四边形?(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。
直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
八年级数学学习方法技巧
“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。
自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
八年级数学人教版知识点总结一次函数篇七
2、相似三角形判定定理1两角对应相等,两三角形相似(asa)
3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
4、判定定理2两边对应成比例且夹角相等,两三角形相似(sas)
5、判定定理3三边对应成比例,两三角形相似(sss)
7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
8、性质定理2相似三角形周长的比等于相似比
9、性质定理3相似三角形面积的比等于相似比的平方
10、边角边公理有两边和它们的夹角对应相等的两个三角形全等
11、角边角公理有两角和它们的夹边对应相等的两个三角形全等
12、推论有两角和其中一角的对边对应相等的两个三角形全等
13、边边边公理有三边对应相等的两个三角形全等
14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
15、全等三角形的对应边、对应角相等
【等腰、直角三角形】
1、等腰三角形的性质定理等腰三角形的两个底角相等
2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
3、等腰三角形的顶角平分线、底边上的中线和高互相重合
4、推论3等边三角形的各角都相等,并且每一个角都等于60°
5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
6、推论1三个角都相等的三角形是等边三角形
7、推论2有一个角等于60°的等腰三角形是等边三角形
8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
9、直角三角形斜边上的中线等于斜边上的一半
八年级数学人教版知识点总结一次函数篇八
1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
八年级数学人教版知识点总结一次函数篇九
1.先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。
我们应该看看我们做得对不对;还有什么解决办法;问题在知识体系中的地位是什么;解决办法的实质是什么;问题中的知识是否可以与我们所要求的交换,以及我们是否可以作出适当的补充或删除。有了以上五个回头看,解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。
有人认为,要想学好数学,只要多做题,功到自然成。数学要不要刷题?一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多刷题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,进行章节总结是非常重要的。
八年级数学人教版知识点总结一次函数篇十
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形
8、多边形的内角:多边形相邻两边组成的角叫做它的内角
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
四边形
1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3、平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5、直角三角形斜边上的中线等于斜边的一半。
6、矩形的定义:有一个角是直角的平行四边形。
7、矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。ac=bd
8、矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。
9、菱形的定义 :邻边相等的平行四边形。
10、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
11、菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。
图形的平移与旋转
1、平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、平移性质
(1)图形平移前后的形状和大小没有变化,只是位置发生变化。
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。
八年级数学人教版知识点总结一次函数篇十一
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初中怎样学好数学
学好初中数学培养运算能力
初中数学涉及到大量的运算内容,比如有理数的运算、因式分解、根式的运算和解方程,这些都是初中数学涉及到的知识内容,如果初中生数学运算能力不过关,那么成绩怎么能提高呢?所以运算是学好初中数学的基本功,这个基本功一定要扎实,不然以后的初中数学就可以不用学习了。
初中生在解答运算题的时候,不要急躁,静下心来。初中数学运算的过程是很重要的,这也是初中生对于数学逻辑和思维的培养过程,结果要准确;同时初中生还有要绝对的自信,不要求速度可以慢一点的,尽量一次做对。
学好初中数学做题的数量不能少
不可否认,想要学好初中数学,就要做一定量的数学题。不赞同大量的刷题,那样没有什么意义。初中生做数学题主要是以基础题的练习为主,将初中数学的基础题弄懂的同时,反复的做一些比较典型的题,这样才是初中生正确的学习数学方式。
在初中阶段,学生要锻炼自己数学的抽象思维能力,最好的结果是在不用书写的情况下,就能够得到正确的答案,这也就是我们常说的熟能生巧。同时也是初中生数学基础知识牢固的体现。相反的,有的初中生在做练习题的时候,比较盲目和急躁,这样的结果就是粗心大意,马虎出错。
课上重视听讲课下及时复习
初中生数学能力的培养一部分在于平时做题的过程中,另一部分就在课堂上。所以初中生想要学好数学,就要重视课内的学习效率,在课上的时候要跟紧老师的思路,大胆的推测老师下一步讲课的知识,尤其是基础知识的学习。在课后初中生还要对学习的数学知识点及时复习。对于每个阶段初中数学的学习要进行知识点归纳和整理。
初中数学多项式知识点
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
八年级数学人教版知识点总结一次函数篇十二
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。
记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
八年级数学人教版知识点总结一次函数篇十三
第一章分式
1分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3整数指数幂的加减乘除法
4分式方程及其解法
第二章反比例函数
1反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2反比例函数在实际问题中的应用
第三章勾股定理
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2勾股定理的逆定理:如果一个三角形中,有两个边的.平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
1.先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。
必须用好你的数学笔记
记下的笔记只停留在纸上,要成为你自己的东西,必须用心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
当然,课堂的问题解决了,其他的问题也就迎刃而解了,所以,高一的学生们,请不要轻易讨厌数学,因为多半是由于你不了解数学,其实它很善良,也很有魅力,试着用心去学,你一定会成功。
八年级数学人教版知识点总结一次函数篇十四
1、 三角形两边的和大于第三边,两边的差小于第三边。
2、 三角形的三条中线相交于一点,三角形三条中线的交点叫做三角形的重心。
3、 三角形是具有稳定性的图形,而四边形没有稳定性。
4、 三角形内角和定理 三角形三个内角的和等于180
5、 直角三角形的两个锐角互余。
6、 有两个角互余的三角形是直角三角形。
7、 三角形的一边与另一边的延长线组成的角叫做三角形的外角。
8、 三角形的外角等于与它不相邻的两个内角的和。
9、 各个角都相等,各条边都相等的多边形叫做正多边形。
10、 n边形内角和等于 (n-2)×180°。n
11、 n边形的外角和等于360°
全等三角形
1、 全等三角形的对应边相等,对应角相等。
2、 三边分别相等的两个三角形全等。(sss)
3、 两边和它们的夹角分别相等的两个三角形全等。(sas)
4、 两角和它们的夹边分别相等的两个三角形全等。(asa)
5、 两角和其中一个角的对边分别相等的两个三角形全等。(aas)
6、 斜边和一条直角边分别相等的两个直角三角形全等。(hl_)
7、 角的平分线上的点到角的 两边的距离相等。
8、 角的内部到角的两边的距离相等的点在角的平分线上。
八年级数学人教版知识点总结一次函数篇十五
圆上任意两点间的部分叫做圆弧,简称弧;
圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;
大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;
由弦及其所对的弧组成的图形叫做弓形。
(1)当两圆外离时,dr_+r;
(2)当两圆相外切时,d=r_+r;
(3)当两圆相交时,r_-r
(4)当两圆内切时,d=r_-r(rr);
(4)当两圆内含时,d
其中,d为圆心距,r、r分别是两圆的半径。
如何判定四点共圆,我们主要有以下几种方法:
(1)到一定点的距离相等的n个点在同一个圆上;
(2)同斜边的直角三角形的各顶点共圆;
(3)同底同侧相等角的三角形的各顶点共圆;
(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;
(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;
(7)四边形abcd的一组对边ab、dc的延长线相交于点p,若pa_*pb=pc_*pd,则它的四个顶点共圆。
当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一
条件来证明问题.
当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.
当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性
质来证明问题.
当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这
一性质来证明问题.
当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切
线找到两圆之间的关系.
当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找
出两圆的角之间的关系.
若已知中告诉两圆相交或相切,一般通过作两圆的'连心线,利用两相交圆的连心线垂直
平分公共弦或;两相切圆的连心线必过切点来证明问题.
若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利
用弦切角定理来证明问题.
题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,
还可以通过作圆的半径,利用同圆的半径相等来证明问题.
当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。一般地,
有以下几种添加辅助线的作法:
(1)已知一直线是圆的切线时,通常连结圆心和切点,使这条半径垂直于切线.
(2)若已知直线经过圆上的某一点,需要证明某条直线是圆的切线时,往往需要作出经
过这一点的半径,证明直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公
共点没有确定,则需要过圆心作直线的垂线,得到垂线段,再通过证明这条垂线段的长等
于半径,来证明某条直线是圆的切线.简记为“作垂直,证半径”.