感恩是一种智慧,让我们在困境中寻找光明,化解纷争与矛盾。实际行动是最直接也是最有力的感恩方式,我们可以通过帮助、支持和关心他人来表达感谢之情。下面是一些关于感恩的有趣小故事,让我们一起欣赏和思考。
七年级数学知识点归纳人教版篇一
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用p来表示,p(a)=事件a可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作p(必然事件)=1;
3、不可能事件发生的概率为0,记作p(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件a发生的概率等于此事件a发生的可能结果所组成的面积(用sa表示)除以所有可能结果组成图形的面积(用s全表示),所以几何概率公式可表示为p(a)=sa/s全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
七年级数学知识点归纳人教版篇二
单项式和多项式统称整式。
1、单项式
a) 由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b) 单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或—1。
c) 一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
2、多项式
a) 几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
b) 单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
a) 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
b) 括号前面是—号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
1、同底数幂的乘法法则:
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
b) 指数是1时,不要误以为没有指数;
d) 当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为整数);
e) 公式还可以逆用: (m、n均为整数)
a) 幂的乘方法则: (m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
b) 。
d) 底数有时形式不同,但可以化成相同。
e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
g) 幂的乘方与积乘方法则均可逆向运用。
七年级数学知识点归纳人教版篇三
知识点1:正、负数的概念:我们把像3、2、+0。5、0.03%这样的数叫做正数,它们都是比0大的数;像—3、—2、—0.5、—0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
知识点11:乘法与除法
1、乘法法则
2、除法法则
3、多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1、倒数概念
2、如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1、乘方的概念,乘方的结果叫什么?
2、认识底数,指数
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算。考试经常考带乘方的计算。
知识点15:科学记数法
科学记数法的概念?注意a的范围
七年级数学知识点归纳人教版篇四
七年级上数学知识点之整式的加减
同学们对数学中整式的加减知识点还记得吧,下面我们一起来回顾学习哦。
1.单项式:表示数字或字母乘积的式子,单独的.一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
6.合并同类项法则:系数相加,字母与字母的指数不变.
7.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
8.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).
希望上面对数学中整式的加减知识的讲解学习,同学们都能很好的掌握,相信同学们会从中学习的更好的吧。
七年级数学知识点归纳人教版篇五
1、先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2、做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。
1、科学的预习方法
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
2、科学的听课方式
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
3、科学的记录笔记
记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错造成的,也有可能是老师讲课疏忽大意造成的,记下来后,便于课后与老师商榷。
记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结--注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
七年级数学知识点归纳人教版篇六
有许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。
二、要养成认真读书,独立思考的好习惯
过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。
一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯。
二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。
七年级数学知识点归纳人教版篇七
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的`项。其中不含字母的项叫做常数项。
多项式中,次数最高的项的次数,叫做这个多项式的次数。
多项式中的符号,看作各项的性质符号。
1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
七年级数学知识点归纳人教版篇八
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为x轴,取向右方向为正方向;纵轴为y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。x轴和y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
4、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
5、点到轴及原点的距离
在平面直角坐标系中对称点的特点:
1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。