环保标语可以通过各种媒体手段传播,具有广泛的影响力和宣传效果。如何设计一个引人注目的环保标语?这是一个需要深思熟虑的问题。眼前的绿色,需要我们的共同守护。
七年级数学有理数知识点秒懂视频篇一
1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。
2、正整数、0、负整数、正分数、负分数这样的数称为有理数。
3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
七年级数学有理数知识点秒懂视频篇二
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
七年级数学有理数知识点秒懂视频篇三
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
七年级数学有理数知识点秒懂视频篇四
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
七年级数学有理数知识点秒懂视频篇五
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用p来表示,p(a)=事件a可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作p(必然事件)=1;
3、不可能事件发生的概率为0,记作p(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件a发生的概率等于此事件a发生的可能结果所组成的面积(用sa表示)除以所有可能结果组成图形的面积(用s全表示),所以几何概率公式可表示为p(a)=sa/s全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
七年级数学有理数知识点秒懂视频篇六
1、单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。
2、系数:单项式中的数字因数
3、次数:单项式中所有的字母的指数和
1、几个单项式的和叫做多项式。
2、每个单项式叫做多项式的项。
3、不含字母的项叫做常数项。
项。
1、单项式和多项式统称为整式。
整式的加减
1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
2、把多项式中的同类项合并成一项,叫做合并同类项。
3、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
合并同类项——去括号
1、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
七年级数学有理数知识点秒懂视频篇七
在年少学习的日子里,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。还在为没有系统的知识点而发愁吗?以下是小编帮大家整理的七年级数学《统计图的选择》知识点,仅供参考,欢迎大家阅读。
为了使市场调研资料的表达直观生动、通俗易懂、便于分析比较等,可以利用统计图进行市场调研分析、预测和分析现象之间的数量关系及变化发情情况。统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。在解答资料分析测验中有关统计图的试题时,既要考察图的直观形象,又要注意核对数据,不要被表面形象所迷惑。
相关类型
(1)条图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。
(2)百分条图和圆图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。
(3)线图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。
(4)半对数线图:纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。
(5)直方图:描述计量资料的频数分布。
(6)散点图:描述两种现象的相关关系。
(7)统计地图:描述某种现象的地域分布。
七年级数学有理数知识点秒懂视频篇八
1.方程是含有未知数的等式。
2.方程是等式,等式不一定是方程。
3.只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
1.分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2.列方程是解决问题的重要方法,利用方程可以解出未知数。
1.解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
1.等式的性质1等式两边同时加(减)同一个数(或式子),结果仍相等。
2.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
1.把多项式中同类项合成一项,叫做合并同类项。
边移到另一边,这样的变形叫做移项。
1.括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变
2.括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
七年级数学有理数知识点秒懂视频篇九
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用p来表示,p(a)=事件a可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作p(必然事件)=1;
3、不可能事件发生的概率为0,记作p(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件a发生的概率等于此事件a发生的可能结果所组成的面积(用sa表示)除以所有可能结果组成图形的面积(用s全表示),所以几何概率公式可表示为p(a)=sa/s全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
初一数学学习方法
一预习
对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
二听讲
这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
三复习
体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
四作业
认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。
五总结
这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。
如何挑选及处理习题
一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。
二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。
要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的反思,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。
三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。
因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”