教案模板是教学设计的基础,也是教师授课的参考依据之一。以下是小编为大家收集的高一教案范文,仅供参考,大家一起来学习和分享。
比和比例教案篇一
一、填空题
1、甲数除以乙数的商是2.8,甲、乙两数的最简比是()。
2、圆的周长与直径的比值是();正方形的周长与边长的比值是()。
3、在24的约数中选出四个数,组成一个比例是()。
4、如果苹果重量的1/6与橘子重量的20%相等,那么苹果重量与橘子重量的比是()。
5、在一个比例中。两个内项互为倒数,其中一个外项是最小的合数,另一个外项是()。
6、用一张长和宽之比为2:1的纸剪两个最大的圆,这张纸的利用率是()。
7、一根钢管长3米,截去1/3后又截去1/3米,比原来短了()米。
8、圆柱体的侧面积一定,()和高成反比例。
9、两个长方形的面积比是8:7,长的比是4:5,宽的比是()。
10、请写出两个内项相等,两个比的比值都是0.4的一个比例。
二、判断题
1、正方形的边长和面积不成比例。
2、等第等高的平行四边形与三角形的面积之比为2:1。
3、比例尺一定,图上距离和实际距离成反比例。
4、甲、乙两个足球队的比赛结果是3:0,这个比的前项是3,后项是0。
5、两个正方体的棱长之比为2:3,则他们的体积之比为4:9。
三、选择题
1、一种长5毫米的零件,画在图纸上长10厘米,这副图的比例尺是()
a、1/2b、2/1c、1/20d、20/1
2、圆的面积和()成正比例。
a、半径b、直径c、半径的平方d、
3、一项工程,甲独做5天完成,乙独做6天完成,甲、乙两人的工作效率的比是()
a、5:6b、6:5c、1/6:1/5d、5/11:6/11
4、路程一定,所走的路程和剩下的`路程()
a、成正比例b、成反比例c、不成比例
5、xy+2=k(一定),x和y()
a、成正比例b、成反比例c、不成比例
6、下列选项中,()成正比例,()成反比例,()不成比例。
a、比的前项一定,比的后项和比值。
b、比例尺一定,分母和分数值。
c、正方形的边长和面积。
四、计算题(解比例略)
五、解决问题
6、一个长方形操场长100米,宽50米,把它画在比例尺是1/2000的图纸上,长和宽各应画多少厘米?请画出这个长方形。
比和比例教案篇二
教科书69、70页练习十三第9~13题
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
实物投影
一、复习
1、复习正反比例的意义。
要求学生说出成正反比例量的关键,根据学生回答板书关系式。
2、判断下面各题中的两种量是不是成比例,成什么比例
(1)圆锥的体积和底面积。
(2)用铜制成的零件的体积和质量。
(3)一个人的身高和体重。
(4)互为倒数的两个数。
(5)三角形的底一定,它的`面积和高。
(6)圆的周长和直径。
(7)被除数一定,商和除数。
二、练习
完成练习十三9~13题
1、第9题。
观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习
1、a与b成正比例,并且在a=1。。时,b的对应值是0。15
(1)a与b的关系式是a/b=()
(2)当a=2。5时,b的对应值是()
(3)当b=9。2时,a的对应值是()
2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?
比和比例教案篇三
p47~48,例7、正、反比例的比较。
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
一、复习
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题
2、学习例7
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并小结。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线
在这条直线上,当时间的.值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、总结正、反比例的特点(异同点)
由学生比、说
三、巩固练习
1、练一练第1、2题
2、p49第1题。
四、课堂小结:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业
六、课后作业
比和比例教案篇四
小学六年级的学生在学习正比例和反比例这部分内容时,尤其是在练习过程中容易混淆不清,经常弄错。下面,本文从不同的角度帮助他们正确区分这两者的关系,希望对他们的学习会有所帮助。
一、正确认识两者的意义
正比例和反比例的意义教材中是安排在从p39到p47来进行叙述讲解的,且都是通过对实验中的数据进行分析之后概括得出的结论,这样学生相对易于接受。
1.正比例的意义:教材中的表述是“两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。”
2.反比例的意义:教材中的表述是“两种相关联的量,一种量变化,另种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。”
二、正比例和反比例的'表达式
(一)正比例关系的表达式
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的关系式来表示:
y/x=k(一定)或y=kx(k一定)
(二)反比例关系的表达式
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用下面的关系式来表示:
x×y=k(k一定)或y=kx(k一定)
三、正比例和反比例的规律及实质
1.正比例关系中两种相关联的量的变化规律。正比例关系中两种相关联的量的变化规律是:同时扩大,同时缩小,比值(或商)不变。
例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
完成该题练习时,可以先写出路程、速度和时间三者之间的关系式:速度=路程/时间,已知条件中速度为一定(即常量),根据“速度=路程/时间”这一关系式,结合正比例的意义,即可知道所行的路程和所用的时间是成正比例关系的。也就是说,当速度一定时,走的路程越多,所花费的时间也越多,反之,亦然。换句话说,路程和时间是成倍增长或缩小的。
2.反比例关系的两种相关联的量的变化规律
反比例关系的两种相关联的量的变化规律是:一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变。
例如:当图上距离一定时,实际距离和比例尺是否成反比例?因为实际距离×比例尺=图上距离(一定),所以,实际距离和比例尺是成反比例的。
四、正比例和反比例的异同点
(一)正比例和反比例的相同点
1.在事物关系中都包含有三个量,(本网网)即有两个变量和一个常量(即定值)。
2.在相关联的两个变量中,当一个变量发生变化时(扩大或缩小),则另一个变量也随之发生变化。
3.它们相对应的两个变量的积或商都是一定的(即常量)。
也就是说,在正比例和反比例的两个相关联的变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
(二)正比例和反比例的不同点
1.正比例的定量(或定值)是两个变量中相对应的两个数(即变量)的比值(或商)。反比例的定量是两个变量中相对应的两个数的积。
2.当用图象来表示正比例或反比例中两个变量之间的关系时,所画出来的图象是不一样的。正比例的图象是一条倾斜的直线(又叫斜线)。反比例的图象是一条曲线,且两端永远不会与两条轴线(即横轴和纵轴或函数中所称的x轴和y轴)相交。
(三)正比例、反比例之间可以相互转化
当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,则由反比例转化为正比例。
需要说明的是,教科书中在“正比例和反比例的意义”的讲解中,并没有指出正比例和反比例关系表达式中常量和变量的取值范围。根据正比例的关系式y/x=k(一定)和反比例的关系x×y=k(k一定)可以知道,无论是正比例还是反比例,两个变量x、y和常量k均不能为零。试想,在正比例y/x=k(一定)中,如果x为0,式子无意义;如果y为0,x不为0,则x的值是不确定的(这时候k的值为0),此时x和y就不存在正比例的说法了。同样,在反比例x×y=k(k一定)中,如果x和y两个变量中,只要其中一个为0或两个都同时为0,则k的值都为0,x和y也无所谓反比例关系了。再说,如果x和y同时为0的话,那么x和y也不叫变量了,都不符合反比例的意义。所以,无论是正比例关系,还是反比例关系中,两个变量x和y以及常量k都不能为0。
因此,当正比例或反比例关系中其中一个变量用字母表示时,要求我们通过讨论确定另一个变量的取值范围的时候,我们就要注意正比例或反比例关系中两个变量的取值绝对不能为零,否则,就失去意义了。
【参考文献】
1.卢江、杨刚主编,义务教育课程标准实验教科书小学六年级《数学》下册[s],人民教育出版社出版。
2.谢鼓平主编,小学六年级数学《教案与设计》[s],新疆青少年出版社出版。
3.《贵州教育》[j]第3-4期合订本第65页中《小学数学毕业复习建议》(王艳)。
比和比例教案篇五
该板块主要复习比和比例的意义、性质及应用,除了对基本概念的复习外,还注重沟通比和比例间的关系及与分数、除法的联系。
例题:关于比、比例的知识,你都知道哪些?对比和比例的相关知识的复习。
教学时,以问题“关于比和比例的知识,你都知道哪些?”引入,让学生自主地回顾知识。学生可能会想到很多,同时也会感到这些知识点比较零乱、无序、缺乏系统化,进而激发学生梳理这部分知识的需求,在此基础上以小组为单位展开学习。重点对比、比例、比例尺的意义及比和比例的性质、化简比、求比值、解比例、求图上(实际)距离、判断正(反)比例等内容进行与复习。
“讨论与交流”是从知识内在联系方面进行,重点弄清楚比、比例与相关知识的联系与区别。
教学第一个问题时,先让学生自主讨论比、分数、除法的联系与区别,借助于下图,揭示它们之间的关系。
从意义上区分:“比”是表示两个数的倍数关系;“除法”表示的是一种运算;“分数”则是一个数。
教学第二个问题时,结合第一个问题的讨论,让学生自主交流,能体会到比、除法、分数的基本性质在本质上是相同的。
教学第三个问题时,可在对比和比例意义进行对比的基础上进行讨论、交流,明确“比”表示两个数相除的关系,而“比例”表示两个比相等的式子。了解比是比例的基础,比例是比的扩展,没有两个相等的比是组不成比例的。还要弄清楚不是任意的两个比都能组成比例的,-定是比值相等的两个比才能组成比例。所以,要判断两个比能否组成比例,关键要看这两个比的比值是否相等。可借助下面的表格帮助学生理解:
通过上面的复习,让学生进一步地感受到“数学知识间,有着密切的联系”
第1题,是运用逼和比例尺解决问题的题目,练习时先让学生说一说每一个信息中比及比例尺所表示的实际意义,然后再结合实际意义感受比和比例在实际生活中应用非常广泛。
第2题是运用正比例知识解决实际问题的题目。练习时,可以用以下几种方法测量大树的高度:
(1)利用影子。人影与树影、人高与树高的比组成比例,根据人高、人影、树影的高度求出树高。
(2)利用标杆。方法同上
最后,让学生谈谈感受,体会比例知识在生活中的实际应用。
第3题是用百分数和比解决问题的题目。练习时,可让学生在解决问题的基础上,交流百分数和比所表示的实际意义,理解比与百分数意义的区别,体会在通常情况下,表示各部分的关系时,用比表示更清楚;表示部分与总数之间的关系,用百分数更合适一些。
第4题是一道实际问题。练习时,可引导学生先分析用什么方法来解答,形成思路后,再解答。该题可以用分数的知识解答,先求出总数是5000顶,再计算5000×(1-),得出4000顶;也可以用比例的知识解决,设未加工的为x顶,1:4=1000:x,求出未加工4000顶;还可以用其他方法解决。通过解题让学生体会在实际解决问题时,可以选用不同的方法。
5.式与方程
本板块是对小学阶段学习的代数初步知识进行,包括用字母表示数、简易方程及用方程解决实际问题。
例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗?是对用字母表示数知识的系统。
教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等又系统的`了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。
例2:你能把有关方程的知识一下吗?是对有关方程知识进行。
教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表,交流完善。
复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。
“讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。
教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。
“应用与反思”
第1题是练习用字母表示数的题目。练习时,让学生独立完成,交流时注意说说每个题的数量关系。最后,体会用字母表示数量关系的简洁性。
第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。
第4题是用列方程的方法解决问题的题目。练习时,先找出题中的等量关系,通过交流引导学生自觉选择最基本的等式列方程。之后,可以让学生交流用方程解决问题的方法。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生用不同方法解决问题的特点。
比和比例教案篇六
教材第32页例2、例3,练一练和试一试练习六第6-11题,练习六后的思考题。
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
一、复习引新
1、做第32页复习题。
让学生先思考可以怎样想。根据思考的方法在括号里填上数。
2、根据比例的基本性质把下面的比改写成积相等的式子。(日答)
4:3=2:1.5x:4=1:2
3、引入新课
在上面两题里,第1题是求比例里的未知项。从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例里另外一个未知数,这种求比例里的未知项,就叫做解比例。
现在,我们就应用比例的基本性质来解比例。
二、教学新课。
1、教学例2
提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做,再试着做做看。
指名一人板演,其余学生做在练习本上。
2、教学例3
出示例题,让学生用比例形式读一读。
让学生解答在自己的练习本上。
指名口答解比例过程,老师板书。
3、教学试一试
出示例3,提问已知数都是怎样的数。
让学生自己解答。
4、小结方法。
三、巩固练习。
1、做练一练
指名四人板演。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第10题。
学生做在练习本上。
4、做练习六第11题。
学生口答,老师板书,看能写出多少个比例。
四、讲解思考题。
提问:根据题意,两个外项正好互为倒数,你想到什么?
两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例?
六、课堂作业。
练习六第6题(1)-(4)题,第7题。
家庭作业:练习六第6题(5)、(6)题,第9题和思考题。
比和比例教案篇七
p50第3——8题,正反比例关系练习。
进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
一、揭示课题
二、基本知识练习
1、正、反比例意义
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习
1、练习:p50第5题
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的。
2、做练习十二第6题、第7题
3、做第8题
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业
《练习与测试》p25第五、六题。
比和比例教案篇八
1、进一步理解比例的意义和基本性质,能区分比和比例。
2、能正确理解正、反比例的意义,能正确进行判断。
3、拓展思维能力。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的'半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例
5/x=10/340/24=5/x
3、完成26页2、3题
综合练习
1、a1/6=b1/5a:b=():()
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
整理和复习
比例的意义
比例比例的性质
解比例
正反比例正方比例的意义
正反比例的判断方法
比例应用题正比例应用题
反比例应用体题
比和比例教案篇九
1、让学生在现实情境中体会按比例分配的合理性,理解按比例分配的意义。
2.理解按比例分配的解题思路,能利用按比例分配解决实际问题。
3.创造民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活思维过程中形成积极学习情感。
2、学生实际:
本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的:
(1)本班学生活泼好动,思维灵活,有较强的自学能力和小组合作能力
(3)学生对生活中隐含数学问题的事件兴趣浓厚;
设计理念:
1、联系生活,注重其应用性,真正体现“让学生学有价值的数学”。
2、张扬个性,鼓励 解题方法的多样化。也就是鼓励学生独立思考,用自己的方法解决问题,同时注重引导学生讨论和辩论,使学生从不同角度,不同方式思考问题。
3、创设生活情境,让学生体验到数学来源于生活,又服务生活的宗旨。
(3)情境迁移策略:在完成课标要求的基础上,通过设置与生活实际紧密联系的问题情境,巩固提高学生运用方程解决生活问题的能力。
比和比例教案篇十
1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。 2、能运用解比例的方法解决实际问题。教学重点掌握解比例的方法,学会解比例。教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学重点掌握解比例的方法,学会解比例。
教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
上节课我们学习了一些比例的意义,谁能说一说
1、什么叫比例?
表示两个比相等的式子叫比例。
2、比例的基本性质是什么?
在比例里,两个外项的积等于两个内项的积。
3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6︰10和9︰15 ( )
20︰5和4︰1 ( )
5︰1和6︰2 ( )
4、根据比例的基本性质,将下列各比例改写成其他等式。
3 : 8 = 15 : 40 3×40=8×15
9/1.6=4.5/0.8 9×0.8=1.6×4.5
5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)
1、自学:什么是解比例?请看书第35页
比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、自主学习例2。
出示思考题:
思考:
(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。
也就是( )的高度:( )的高度=1:10
还有几个项不知道?不知道的这个项我们把它叫做( )项。
小组内讨论解决问题,汇报:
(1)把未知项设为x。
(2)根据比例的意义列出比例:(x:320=1:10 )
(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。
(4)根据比例的基本性质可以把它变成什么形式?
(5)这变成了原来学过的什么?(方程。)
(6)让学生自己在练习本上计算完整。课件出示计算过程。
小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。
解比例的步骤是:
(1)、用比例的基本性质把比例改写成方程。
(2)、应用解方程的知识算出未知数。
3、教学例3。
出示例3:
思考:
(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)
(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
讨论:
(1)解这种分数形式的比例时,要注意什么呢?
(2)在这个比例里,哪些是外项?哪些是内项?
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。
课件出示:做一做,独立完成后订正。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
(一)、填空。
1、解比例x:12=2 : 24第一步24x=12×2是根据( )。
2、把0、3 : 1、2=0、2 : 0、8可改写成
( )×( )=( )×( )
3、把4×5=10×2改写成比例是( ) :( )=( ) : ( )
4、若甲:乙=3 : 5,甲=30,则乙=( )
5、在比例中,如果两个内项的积上36,其中一个外项是9,
另一个外项是( )
(二)、判断下列的说法是否正确。
1、含有未知数的比例也是方程。 ( )
2、求比例中的未知项叫解比例。 ( )
3、解比例的理论依据是比例的基本性质。 ( )
4、比就是比例,比例也是比。 ( )
(三)、根据题意,先写出比例,再解比例。
1、8与x的比等于4与32的比。
2、14与最小的质数的比等于21与x的比。
今天你有什么收获?指生说收获。老师小结。