教学计划是教师对教育教学过程进行系统设置和安排,保证教学活动有序进行的重要文件。以下是小编为大家精心挑选的教学计划范文,快来看看吧。
最热约分和通分教学设计大全(13篇)篇一
第65页的例4和“试一试”,“练一连”和练习十二的第1—4题。
1、初步理解通分及公分母的.意义。
2、能正确的把异分母分数化成与它们相等的同分母分数。
3、通过亲历探索通分的意义与方法这一知识的形成和发展过程,体验成功的快乐。
:理解通分的意义。
选择分母的最小公倍数做为公分母。
一、复习。
1、说一说:最小公倍数4和6、8和9、9和5。
2、化成分母是20而大小不变的分数1/5、3/4、7/10。
二、新授。
1、出示例题。
例4:把3/4和5/6改写成分母相同而大小不变的分数。题目要求是什么?(改写分母相同大小不变)。
小组学习,交流各小组汇报。
为了计算简便,一般取最小公倍数做公分母。
把异分母分数分别化成和原来分数相等的同分母分数叫做通分。
3、你觉得通分的依据是什么?
4、通过自学、讨论,我们知道了这些概念和方法,根据这些我们又能解决什么问题呢?
5、通分和约分,有什么区别和联系?
三、巩固练习。
1、试一试先找出1/6和4/9的公分母,再把这两个分数通分。
思路引导:1/6和4/9的公分母是()。
要求学生自由说说中间的过程。
2、练一练(65页)。
3、判断(练习十二题3)。
四、课堂小结。
最热约分和通分教学设计大全(13篇)篇二
通过比较异分母分子不同分数的大小,初步理解通分的意义,并在逐步探索通分的过程中,深刻体验主动发现问题、解决问题的成就感,选择适合自己操作的方法解决有关问题。
主动探索掌握通分的方法。
一、铺垫创境。
1、求最小公倍数4和6、8和9、9和27。
2、把下面的分数按分母相同或不同进行分类。
3、化成分母是20而大小不变的分数。
4、比较下面各组数的大小。
二、探究学习。
1、独立思考:你先自己动脑思考怎样解决这个问题?
2、小组交流:当你对问题有了初步设想时,可以与小组其他同学交流一下想法。
3、大组交流:哪一组来说说本组的想法?其他小组可以质疑、补充。
4、观察分析:第一类方法的几种情况共同经历了一个怎样的过程?
将异分母分数转化成与原来分数相等的同分母分数的过程。说说通分是一个怎样的过程?
5、上面两种通分方法,你更喜欢哪一种通分的方法?为什么?用两个分母的最小公倍数作公分母比较简便。
6、做一做:把下面两组分数通分和。
三、巩固深化。
2、比较大小:9/10○11/12。
3、发散训练:1/15()1/6。
通分。
四、课堂小结:你有哪些收获?
转化。
异分母分数。
同分母分数公分母。
分数的基本性质。
最小公倍数。
公倍数。
最热约分和通分教学设计大全(13篇)篇三
通过比较异分母分子不同分数的大小,初步理解通分的意义,并在逐步探索通分的过程中,深刻体验主动发现问题、解决问题的成就感,选择适合自己操作的方法解决有关问题。
主动探索掌握通分的方法。
1、求最小公倍数4和6.8和9.9和27。
2、把下面的分数按分母相同或不同进行分类。
3、化成分母是20而大小不变的.分数。
4、比较下面各组数的大小。
1、独立思考:你先自己动脑思考怎样解决这个问题?
2、小组交流:当你对问题有了初步设想时,可以与小组其他同学交流一下想法。
3、大组交流:哪一组来说说本组的想法?其他小组可以质疑、补充。
4、观察分析:第一类方法的几种情况共同经历了一个怎样的过程?
将异分母分数转化成与原来分数相等的同分母分数的过程。说说通分是一个怎样的过程?
5、上面两种通分方法,你更喜欢哪一种通分的方法?为什么?用两个分母的最小公倍数作公分母比较简便。
6、做一做:把下面两组分数通分和。
2、比较大小:9/10○11/12。
3、发散训练:1/151/6。
通分。
转化。
异分母分数。
同分母分数公分母。
分数的基本性质。
最小公倍数。
公倍数。
文档为doc格式。
最热约分和通分教学设计大全(13篇)篇四
教科书第65页,例4、试一试、练一练,练习十二第1~4题。
1、使学生在自主探索中,掌握通分的方法,能真确进行通分。
2、使学生在探索、合作交流过程中,体验成功的愉悦,在知识的运用中体现数学的价值。
教学重点:迅速准确地确定两个分数的公分母,判断分子分母需要扩大多少倍。教学难点:通过自主探究、合作交流让学生体会选择怎样的公分母才最简便。教学准备:教学光盘、填空题打印实物投影。
一、复习引入。
1、在括号里填上合适的数。
2/5=()/203/4=()/201/2=10/()。
学生独立完成,说说是怎么想的?
(1)出示例4。
(2)它们改写成分母相同,而大小不变的分数吗?
在小组中讨论,并试一试。
(3)汇报交流各自想法。你是怎样想到要把它们改成分数是12、24的分数的呢?
(4)化成分母相同的分数,这些分数的分母还可以是哪些数呢?
(5)揭示通分的意义:把几个分母不同的分数(异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
板书课题:通分。通分过程中,相同的分母叫做这几个分数的公分母。
(7)观察上面的通分过程,你认为哪个数作公分母比较简便?
指出:通分时,一般用原来几个分母的最小公倍数作公分母。
2、试一试。
独立完成填空。18是6和9的什么?1/6是怎样得到3/18的?4/9呢?
谁能说说应该怎样通分?先找几个分母的最小公倍数,再根据分数的基本性质通分。
3、练一练。
独立完成通分。展示学生作业,集体评价。
5/6和7/8的公分母是多少?通分的格式与书写过程要规范。
三、巩固练习。
1、完成练习十二第1题。
根据图中的涂色部分,填上分数。把这两个分数通分,并把通分结果写下来。按照通分的结果在图中画一画。
2、完成第2题。
3、完成第3题。
4、完成第4题。独立完成。展示作业,集体核对。
四、课题小结。
通过今天的学习,请你说说什么是通分?通分时要注意什么?在小组中互相交流一下。
2、在教学例4时,我先通过题中具体的分数,引出异分母分数的概念,再引导启发学生把和化成分母相同的分数,公共的分母必须是4和6的公倍数,从而引出了公分母的概念,再引导学生思考:为了计算简便,取哪一个公倍数作公分母,然后出示了通分的关键。
3、在教学通分过程时,我重点是解决对照公分母思考把原来的分母和分子要同时乘以几,引导学生想:公分母是原来分母的几倍,原来分数的分母和分子要同时乘以几。为了帮助学生真正理解通分的道理,我借助教材上直观图形的演示,取得了较好的效果。在此基础上,引导学生自己总结归纳出通分的意义和方法。
4、练习“试一试”时我着重引导学生想通分实质是什么。取什么做公分母,根据什么把异分母化成同分母分数,然后让学生独立往书上填,老师根据情况予以指导,这样做有利于学生能力的培养。
5、巩固练习:着重培养学生分析问题和解决问题的能力,提高学生的辨别能力。
通分是分数基本性质的直接应用。课始我让学生复习如何求两个数的最小公倍数(有一般关系、倍数关系、互质关系)的方法,为顺利学习通分打下基础的。再让学生用学过的知识把3/4和5/6改写成分母相同而大小不变的分数学生在探究本上独立完成,我巡视了一下,发现学生有不同的改写结果,我有选择地指定三名学生上黑板板演。有的同学把它们化成分母是12的分数,也有化成分母是24的分数,还有写成分母是48的分数.让学生共同评议板演的学生改写结果是否正确。
我在黑板上出示了三个问题:
1、把3/4和5/6改写成分母相同的分数时,首先要确定什么数?
2、改写过程中要注意什么问题?
3、改写的依据是什么?在学生们讨论后我作了小结,让学生明确改写时两个分数的大小不能变,改写的依据是分数的基本性质,分子和分母必须乘相同的数。我随机揭示了什么叫通分、异分母分数、同分母分数、公分母的概念,学生根据板书的内容很容易理解.然后让学生根据学生的板书说说用哪个数作公分母比较简便,最后让学生阅读课本上内容,进一步理解通分的过程分几步,我根据学生回忆的内容作相应的板书:
1、确定公分母(最小公倍数)。
2、化成同分母分数。
最热约分和通分教学设计大全(13篇)篇五
1、使学生认识约分和最简分数的意义,理解和掌握约分的方法。
2、培养学生的观察、比较和归纳等思维能力。
掌握约分的方法。
很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
1、指出下面每组数中的公约数(1除外)。
42和50、15和5。
8和21、18和12。
2、孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知道孙悟空有72变,特神奇,你们想不想也学一招?好,这节课我们就来创造第73变,变分数!”来激发学生学习新知识的激情。
1、尝试“变”分数。
例1:把化简。
活动要求:
(1)这个分数要和大小相等。
(2)这个分数的分子、分母要比的分子、分母小。
(3)要求学生变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。
2、了解约分的概念。
(1)观察所变出的分数与有什么关系?
(2)像这样,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。举例:把化成就是约分。
与四人小组内的同学说一说变的分数是怎样得来的。
观察后发现分数大小相等,但分子、分母都比原来分数的分子、分母小。
3、认识最简分数。
(1)观察的分子、分母能否再变小了?为什么?
(2)像这样分子、分母是互质数的分数,叫做最简分数。
(3)找出最简分数练习。
举例说出几个最简分数。强化最简分数的概念、
1、你能根据我们化简的过程找到约分的方法吗?
打开书p62,看看书上是如何说的?
2、自主探索约分的形式。把一个分数进行约分?
教师板书约分时一般采用的两种形式。
a、逐次约分法。
b、一次约分法。
如果能很快看出18和42的最大公约数,也可直接用6去除,一次约分得。
3、小结:我们既可以用它们分子、分母的公约数去除,一步一步来约分;也可以用最大公约数去除,直接约分。
有恰当的学生自学引导:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。
1、说出分母是4的所有最简真分数。写出分母是9的所有最简真分数。
2、先判断哪些分数是最简分数,把不是最简分数的分数进行约分。
4、用最简分数表示出小明每一项内容占一天总时间的几分之几?
上学8小时。
睡眠10小时。
劳动1小时。
做家庭作业2小时(含课外阅读时间)。
餐饮休闲3小时。
5、每人从信封袋中挑选一个自己最喜欢的分数卡片。
(1)最简分数上台。和最简分数相同的分数起立。
(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。
判断并说明理由。
最热约分和通分教学设计大全(13篇)篇六
1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分。
2、培养学生综合运用已有知识解决问题的能力。
3、渗透恒等变换思想。
约分的意义和方法。
说出下面哪些数有约数2?哪些数有约数3?哪些数有约数5?
1620364554。
师:前面同学们认识了分数的基本性质,根据分数的基本性质可以把一些分数化简,这节课我们就来学习“约分”。(板书课题)。
1.教学例1。
(1)出示挂图:让学生用分数表示出图中的.涂色部分。
(2)这三个分数的大小相等吗?待学生回答后,教师将三幅图重合,进一步证实xx。
(3)引导学生根据分数的基本性质,先用分子分母的公约数2去除分子、分母,得:xx,再用分子、分母的公约数3去除,得:xx。
(4)师生共同概括最简分数的意义。
板书:分子、分母是互质数的分数,叫做最简分数。
(5)告诉学生:像这样把分数化成,再化成,这个过程叫做约分。什么叫做约分呢?(让一名学生口述)。
板书:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(6)想一想:约分的依据是什么?
2.练习:教材第111页上面的“做一做”。
(1)指名学生说说把约分是什么意思?
(2)引导学生掌握逐次约分法。
先观察分子、分母有什么特征,再用分子、分母的公约数(1除外)去除分子、分母。30和12有公约数2和3,先用2除12和30,再用公约数3去除6和15。通常除到得出最简分数为止。
(3)掌握一次约分法。
用12和30的最大公约数6去除分子、分母,一次就得到最简分数。如:x或x。
(4)告诉学生,约分时应尽量用口算。能一下看出分子、分母的最大公约数的,就直接用最大公约数去除比较简便。
试一试。
1.写出分子是18的所有最简假分数。
2.写出分母是12的所有最简真分数。
最热约分和通分教学设计大全(13篇)篇七
约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质的基础上进行教学的。同时,约分是与分数的比较大小、分数的四则运算紧密联系的,因此,必须使学生切实掌握好。
根据本课的教学内容和学生的特点,我确定了以下教学目标:
1、经历知识的形成过程,理解约分的含义。
2、探索并掌握约分的方法,能正确地进行约分。
3、培养学生良好的书写习惯和检查习惯。
理解约分的意义,掌握约分的方法。
1、讨论法。通过学生的讨论让他们自己总结归纳出约分的意义和方法。
2、循循善诱,帮助学生理解约分的算理,启发引导学生,鼓励学生积极发言,引导学生动口、动脑、动手,逐步掌握新知。
3、运用不同形式的练习,使学生巩固了所学的知识,使教学得到反馈。
附:
一、复习准备。
提问:各题的依据是什么?
2、说出下面各组数的最大公因数。
45和1530和1228和42。
13和3936和2729和30。
教师:学习了分数基本性质后,我们可以把一个分数的分子和分母同时乘以或除以相同的数(零除外),得到一个与原来分数相等的新分数。今天我们来研究怎样把一个分数化成与它相等,而分子、分母又比较小的分数。
二、学习新课。
1、最简分数与约分的意义。
能利用我们学过的旧知识把它变为大小相等,而分子、分母又比较小的分数?(学生试算,小组讨论后汇报。)。
教师:请再说一说第一步,第二步是怎样做的?(用分子、分母的公约数分别去除分子和分母。)像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫约分。
问:为什么得出后就不再继续算呢?师:像这样不能再约分了,这样的分数是最简分数。
(2)练习:请指出下面哪些分数是最简分数。
教师:请两人一组,各举出5个最简分数。
2、约分的一般书写格式。
教师:约分时,一般要连续地做除法口算,如果像上面例题那样写,比较繁,一般采用省略除数,直接写出商的形式来写。
教师边板书边介绍:
学生练习:
板书:
教师:由上可见,要使约分过程比较简便,应该怎样做?(选用分子和分母的最大公约数去除。)。
(3)练习。
把下面各分数约数:
(设想:约分是分数基本性质的直接应用,所以约分的方法让学生试算,自己去掌握。最简分数的概念,放在试算化简之后,这样可以使学生对概念的认识有充分的感知基础。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求两个数的最大公约数,另外,也要掌握好约分一般书写格式)。
三、巩固反馈。
1、书本上的“练一练”第1———3题。
2、判断正误,并说明理由。
3、书本上的“练一练”第4题。
四、课堂总结。
1、最简分数?
2、什么是约分?怎样约分?
(设想:在复习准备和巩固反馈中,都安排了较多的,形式多样的练习进行训练,以提高学生约分的能力。)。
最热约分和通分教学设计大全(13篇)篇八
教学内容:
第65页的例4和“试一试”,“练一连”和练习十二的第1—4题。
教学目标:
1、初步理解通分及公分母的意义。
2、能正确的把异分母分数化成与它们相等的同分母分数。
3、通过亲历探索通分的意义与方法这一知识的形成和发展过程,体验成功的快乐。
教学重点:理解通分的意义。
教学难点:选择分母的最小公倍数做为公分母。
教学过程:
一、复习。
1、说一说:最小公倍数4和6、8和9、9和5。
2、化成分母是20而大小不变的分数1/5、3/4、7/10。
二、新授。
1、出示例题。
例4:把3/4和5/6改写成分母相同而大小不变的分数。题目要求是什么?(改写分母相同大小不变)。
2、揭示通分的意义。
小组学习,交流各小组汇报。
为了计算简便,一般取最小公倍数做公分母。
把异分母分数分别化成和原来分数相等的同分母分数叫做通分。
3、你觉得通分的依据是什么?
4、通过自学、讨论,我们知道了这些概念和方法,根据这些我们又能解决什么问题呢?
5、通分和约分,有什么区别和联系?
三、巩固练习。
1、试一试先找出1/6和4/9的公分母,再把这两个分数通分。
思路引导:1/6和4/9的公分母是。
要求学生自由说说中间的过程。
2、练一练(65页)。
3、判断(练习十二题3)。
四、课堂小结。
最热约分和通分教学设计大全(13篇)篇九
1、经历知识的形成过程,理解约分的含义。
2、探索并掌握约分的方法,能正确地进行约分。
白纸。
理解约分和最简分数和含义,经历知识形成的过程。
复习:下面分数的分子和分母各有哪些公因数?最大公因数是几?2/3。
10/15。
12/15。
8/12。
4/7。
30/60。
师:今天我们利用上节课所学的知识,来对分数进行进一步地探索。
出示“做一做”:你会用分数表示图中的阴影部分吗?
学生独立完成后,集体反馈。
板书:
师:请你观察上面几个分数,你能得到什么结论?
生可能会说:这几个分数都是相等的。
生可能会有两种方法:
一、用分子和分母的公因数一个一个去除:
8/24=8÷2/24÷2=4/12。
4/12=4÷2/12÷2=2/6。
2/6=2÷2/6÷2=1/3。
把8/24的分子和分母都除以2得到4/12,根据分数的基本性质,分数的大小不变,所以8/24=4/12。
二、直接用两个数的最大公因数去除:
8/24=8÷8/24÷8=1/3。
师:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。
现在1/3还能再约分吗?(不能)像1/3这样不能再约分了,叫做最简分数。
师:把一个分数化成最简分数,有时要约好几次,也可以这样写。(略)。
活动二:试一试。
活动目标:能正确地进行约分。
把16/48化成最简分数:你是怎样约分的?化成的最简分数是多少?
完成练一练第1题:圈出最简分数,并把其余的分数约分。
第2题:猜灯迷,连谜底。
第3题:比较分数的大小。后面几题能不能直接比较出它们的大小?应该怎么办?
第4题:写出三个与三分之二相等的分数。
约分的过程:1、应让学生体会是用分子和分母的公因数去除,一开始不要求用最大公因数去除;2、应注意指导约分的书写格式;3、应强调要约到最简分数为止;4、什么是最简分数应让学生先交流、思考。
复习找24和8的公因数与最大公因数,并板书在黑板上,为下面学生怎样去约分,采用什么方法约分奠定基础。
2、在让学生体会、理解约分的过程时,注意把分数的基本性质、找公因数与最大公因数和判断2、5、3倍数的特征等知识融会贯通,并根据教学过程中的具体情况教师作适当的解释与指导。
3、加强练习的指导过程,注意教学过程中的细节引导。
教学约分方法时,让学生融会惯通找出2,3,5的特征进行教学。同时还要考虑7,11,13,17,19和分子,分母是倍数关系的情况,约分的方法并不难掌握,但是涉及到的旧知识比较多,有分数的基本性质、判断一个数是不是2、3、5的倍数的特征、找两个数的公因数等等,因此要正确熟练地将分数约分成最简分数,还需要下一定的功夫。首先要重视复习的作用,数的整除中有关公因数、2、3、5的倍数、分数的基本性质与本节课约分的学习联系得极为密切,没有前者为知识基础,约分的学习将无法顺利进行。
最热约分和通分教学设计大全(13篇)篇十
教学目标:
1、知道通分的意义,掌握通分的方法。
2、培养学生的归纳总结能力。
3、结合教学内容,渗透“事物之间是相互联系的可以转化的”思想。
教学重点:理解通分的意义,掌握通分的方法。
教学难点:理解通分的算理以及通分的关键:找准分母的最小公倍数作公分母。
教学过程:
一、复习、激趣、引入口。
1、说出下面每组数的最小公倍数。
6和88和99和27。
2、填空(说出依据)。
3/4=/8=9/()=()/16=15/()=()/24。
二、探索新知。
这是小明家的后花园的示意图,现在准备种花。
妈妈说:“这块地的4/5种牡丹花,1/5种草。”
小明说:“这块地的1/2种桃花,1/3种郁金香。”
爸爸说:“这块地的3/6种月季花,1/4种菊花。”
分小组合作进行计算比较。
汇报、交流。
a、化小数进行比较。b、化成分子相同进行比较。c、化成分母相同进行比较。d、画图进行比较。
引导得出方法c比较简便。出示课题:通分。
1、观察c的过程,你发现了什么?
2、引导归纳:
1、异分母分数转化成同分母分数。
2、分数的大小不变。
同桌互说通分的意义。
3、试一试:根据通分的意义想想下列计算过程,哪个是通分,哪个不是通分?
3/4和5/63/4=3×3/4×3=9/12;5/6=5×2/6×2=10/12()。
5/8和2/75/8=5×3/8×3=15/24;2/7=2×4/7×4=8/28()。
4、结合试一试和例题,讨论通分时的难点是什么?(关键)。
公分母有什么特点?(是原有分母的公倍数,为计算简便,通常用最小公倍数)。
5、练习:通分。
5/12和4/93/4、5/6和1/24。
6、看书p100页。
三、巩固新知。
1、判断,下面哪组是通分,哪组不是通分,哪组不够简便?
3/4=3×5/4×5=15/20;3/5=3×5/5×5=15/25()。
5/6=5×6/6×6=30/36;5/18=5×2/18×2=10/36()。
5/14=5×2/14×2=10/28;3/4=3×7/4×7=21/28()。
2、实际应用。
(3)据统计,生活垃圾中废金属占1/4,废纸占3/10,食物残渣占3/10,危险垃圾占3/20。提出问题,并解答。
四、课堂小结。
通过今天的学习,你学会了哪些新知识?你能用这节课学的知识解决哪些问题?
师:其实通分不仅可以比较分数的大小,在异分母分数加减法中还有重要的应用,下节课我们再来一起研究。
五、布置作业。
最热约分和通分教学设计大全(13篇)篇十一
1、使学生认识约分和最简分数的意义,理解和掌握约分的方法。
2、培养学生的`观察、比较和归纳等思维能力。
掌握约分的方法。
很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
1、指出下面每组数中的公约数(1除外)。
42和50、15和5、
8和21、18和12。
2.孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知道孙悟空有72变,特神奇,你们想不想也学一招?好,这节课我们就来创造第73变,变分数!”来激发学生学习新知识的激情。
1、尝试“变”分数。
例1:把化简。
活动要求:
(1)这个分数要和大小相等。
(2)这个分数的分子、分母要比的分子、分母小。
(3)要求学生变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。
2、了解约分的概念。
(1)观察所变出的分数与有什么关系?
(2)像这样,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。举例:把化成就是约分。
与四人小组内的同学说一说变的分数是怎样得来的。
观察后发现分数大小相等,但分子、分母都比原来分数的分子、分母小。
3、认识最简分数。
(1)观察的分子、分母能否再变小了?为什么?
(2)像这样分子、分母是互质数的分数,叫做最简分数。
(3)找出最简分数练习。
举例说出几个最简分数。强化最简分数的概念.
1、你能根据我们化简的过程找到约分的方法吗?
打开书p62,看看书上是如何说的?
2、自主探索约分的形式。把一个分数进行约分?
教师板书约分时一般采用的两种形式。
如果能很快看出18和42的最大公约数,也可直接用6去除,一次约分得。
3、小结:我们既可以用它们分子、分母的公约数去除,一步一步来约分;也可以用最大公约数去除,直接约分。
有恰当的学生自学引导:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。
1、说出分母是4的所有最简真分数。写出分母是9的所有最简真分数。
2、先判断哪些分数是最简分数,把不是最简分数的分数进行约分。
4、用最简分数表示出小明每一项内容占一天总时间的几分之几?
上学8小时。
睡眠10小时。
劳动1小时。
做家庭作业2小时(含课外阅读时间)。
餐饮休闲3小时。
5、每人从信封袋中挑选一个自己最喜欢的分数卡片。
(1)最简分数上台。和最简分数相同的分数起立。
(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。
判断并说明理由。
最热约分和通分教学设计大全(13篇)篇十二
约分(一)。
教材第84页的内容。
1.通过教学,使学生理解最简分数和约分的意义,掌握约分的方法。
2.培养学生应用所学数学知识解决问题的能力。
归纳、概括出最简分数的概念及约分的方法。
投影。
(一)导入。
(1)提问:你能很快找出下面各组数的最大公因数吗?
9和1815和217和94和2420和2811和13。
(2)提问:你是怎样找出两个数的最大公因数的?求两个数的最大公因数有几种情况?
小结:求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。
(二)教学实施。
1.出示例3。
学生独立思考后集体交流,说一说自己是怎样想的?
可以从以下两个角度思考:
(l)。
(2)。
2.提问:的分子和分母有什么关系?
学生观察后回答:的分子和分母只有公因数1,这样的分数叫做最简分数。
3.提问:你还能举出最简分数的例子吗?(学生举例,全班判断。)。
4.完成教材第84页“做一做”的第1、2题。
学生独立完成,集体订正。第2题可以把不是最简分数的化成最简分数,然后比较找出相等的分数。
(三)思维训练:
1.把下面的分数约分后,再按照从小到大的顺序排列起来。
2.下面这个分数的分子、分母是由1一9九个数字组成的。你能把它化成最简分数吗?
3.一个分数约分,用2约了一次,用3约了两次,得。原来这个分数是多少?
后记:
最热约分和通分教学设计大全(13篇)篇十三
1、结合具体情境理解通分的含义,探索并掌握通分的方法。
2、探索分数大小比较的方法,结合具体情境,引导学生用分数描述有关现象。
3、在发现中体验成功,在练习应用中感受知识应用的价值。
教学难点引导学生探索通分的方法,让学生体验根据数据特点灵活运用的优势,进而感受通分与比较大小的重要性。
教学方法知识迁移法
教学准备课件出示情境图
一、温故导新
1、复习简单的分数大小比较
比较大小:1/3和1/2 3/5和2/5
2、复习两个数的公倍数和最小公倍数的找法。
5和7 4和12 12和16
3、导入新知
出示例2
二、新知共研
1、由分数的大小比较引出通分的意义。
引出:通分的意义
2、理解通分的意义,分析通分的方法
让学生议一议:
通分要注意什么?
公分母的最佳选择是什么?(取各分母的最小公倍数)
3、独立尝试练习:
比较3/4和5/6的大小
学生试做汇报,老师选择性板演,针对性评讲
(板书略)
师生评点,取得共识
三、拓展提高
1、提出进一步探究的问题:
对于刚才的比较3/4和5/6大小还有别的方法吗?小组内几个同学议一议。
2、方法探究
3、尝试完成思考题。
师不作任何提示,让学生迁移解题。
四、全课总结
1、这节课收获了什么?
2、对分数的认识,你有什么新感受?
五、布置作业
1、课堂活动题2
2、课本作业练习七:
4、6、7