高二教案是教师在备课过程中编写的,用于指导学生学习的教学计划和教学材料。请大家查看以下高二教案范文,了解如何进行教学设计和安排。
2023年高二数学教案全套(模板16篇)篇一
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。
二、预习内容。
1、双曲线的几何性质及初步运用。
类比椭圆的几何性质。
2。双曲线的渐近线方程的导出和论证。
观察以原点为中心,2a、2b长为邻边的'矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。
三、提出疑惑。
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中。
课内探究。
1、椭圆与双曲线的几何性质异同点分析。
2、描述双曲线的渐进线的作用及特征。
3、描述双曲线的离心率的作用及特征。
4、例、练习尝试训练:
例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
解:
解:
5、双曲线的第二定义。
1)。定义(由学生归纳给出)。
2)。说明。
(七)小结(由学生课后完成)。
将双曲线的几何性质按两种标准方程形式列表小结。
作业:
1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。
(1)16x2—9y2=144;。
(2)16x2—9y2=—144。
2。求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;。
(2)焦距是10,虚轴长是8,焦点在y轴上;。
曲线的方程。
点到两准线及右焦点的距离。
2023年高二数学教案全套(模板16篇)篇二
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;。
归纳——猜想——证明的数学研究方法;。
3、数学思想:培养学生分类讨论,函数的数学思想。
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;。
难点:等比数列的性质的探索过程。
1、问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)。
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)。
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)。
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质。
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)。
1、小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习。
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、作业:
p129:1,2,3。
教学设计说明:
1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的.因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、教学设计过程:本节课主要从以下几个方面展开:
1)通过复习等差数列的定义,类比得出等比数列的定义;。
2)等比数列的通项公式的推导;。
3)等比数列的性质;。
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧。
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比。
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
2023年高二数学教案全套(模板16篇)篇三
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
体会直角坐标系的作用。
能够建立适当的直角坐标系,解决数学问题。
新授课。
启发、诱导发现教学。
多媒体、实物投影仪。
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动。
学生回顾。
刻画一个几何图形的位置,需要设定一个参照系。
1、数轴它使直线上任一点p都可以由惟一的实数x确定。
2、平面直角坐标系。
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的'坐标就能确定这个点的位置。
2、确定点的位置就是求出这个点在设定的坐标系中的坐标。
四、数学运用。
例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练。
变式训练。
2、在面积为1的中,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。
例3已知q(a,b),分别按下列条件求出p的坐标。
(1)p是点q关于点m(m,n)的对称点。
(2)p是点q关于直线l:x-y+4=0的对称点(q不在直线1上)。
变式训练。
用两种以上的方法证明:三角形的三条高线交于一点。
思考。
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2.利用平面直角坐标系解决相应的数学问题。
2023年高二数学教案全套(模板16篇)篇四
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】。
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】。
1.情景导入。
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习。
3、合作探究、交流展示。
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;。
(2)其余各面都是平行四边形;。
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类。
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的`概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)。
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
2023年高二数学教案全套(模板16篇)篇五
1、地位、作用和特点:
《xx》是高中数学课本第xx册(x修)的第xx章“xx”的第xx节内容。
本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《xx》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是xx;特点之二是:xx。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:a、b、c。
(2)能力目标:a、b、c。
(3)德育目标:a、b。
教学的重点和难点:
(1)教学重点:
(2)教学难点:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学xx真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课新课教学反馈发展。
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的'能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
(一)、课题引入:
教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。c、讲述数学科学的有关情况。)激发学生的探究xx,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
以上是我对《xx》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
2023年高二数学教案全套(模板16篇)篇六
1.掌握二项式定理和性质以及推导过程。
2.利用二项式定理求二项展开式中的项的系数及相关问题。
3.使学生能把握数学问题中的整体与局部的关系,掌握分析与综合,特殊和一般的数学思想。
教学重点;二项展开式中项的系数的计算。
1、复习引入:
1.的展开式,项数,通项;
2.二项式系数的四个性质。
2、例题。
1.二项式定理及二项式系数性质的简单应用:
例1(1)除以9的余数是_____________________。
(2)=_______________。
a.b.c.d.
(3)已知。
则____________________。
(4)如果展开式中奇数项的系数和为512,则这个展开式的第8项是()。
a.b.c.d.
(5)若则等于()。
a.b.c.d.
小结1.(1)注意二项式定理的正逆运用;
(2)注意二项式系数的四个性质的运用。
2.二项展开式中项的系数计算:
例2(1)展开式中常数项等于_____________.
(2)在的展开式中x的系数为()。
a.160b.240c.360d.800。
(3)已知求:
小结2.(1)局部问题抓通项;
(2)整体系数赋值法。
三、课堂练习。
(1)展开式中,各系数之和是()。
a.0b.1c.d.。
(2)已知的.展开式中的系数为,常数的值是_________。
(3)的展开式中的系数为______________-(用数字作答)。
(4)若,则。
a.1b.0c.2d.。
四、课堂小结。
五、作业。
2023年高二数学教案全套(模板16篇)篇七
1.函数单调性的定义:
(1)一般地,设函数的定义域为a,区间.
如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调增函数,i称为的___________________.
如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调减函数,i称为的___________________.
(2)如果函数在区间i上是单调增函数或单调减函数,那么就说在区间i上具有___________性,单调增区间或单调减区间统称为____________________.
2.复合函数的单调性:
对于函数如果当在区间上和在区间上同时具有单调性,则复合函数在区间上具有__________,并且具有这样的规律:___________________________.
3.求函数单调区间或证明函数单调性的方法:
(1)______________;(2)____________________;(3)__________________.
【自我检测】。
1.函数在r上是减函数,则的取值范围是___________.
2.函数在上是_____函数(填增或减).
3.函数的单调区间是_____________________.
4.函数在定义域r上是单调减函数,且,则实数a的取值范围是________________________.
5.已知函数在区间上是增函数,则的大小关系是_______.
6.函数的单调减区间是___________________.
【例1】填空题:
(1)若函数的单调增区间是,则的递增区间是_________.
(2)函数的单调减区间是________________.
(3)若上是增函数,则a的取值范围是_____________.
(4)若是r上的减函数,则a的取值范围是_________.
【例2】求证:函数在区间上是减函数.
【例3】已知函数对任意的,都有,且当时,.
(1)求证:是r上的增函数;。
(2)若,解不等式.
1.函数单调减区间是_________________.
2.若函数在区间上具有单调性,则实数a的取值范围是______.
3.已知函数是定义在上的'增函数,且,则实数x的取值范围是_________________________.
4.已知在内是减函数,,且,设,,则a,b的大小关系是_________________.
5.若函数上都是减函数,则上是______.(填增函数或减函数)。
6.函数的递减区间是________________.
7.已知函数上单调递减,则a的取值范围是_________.
8.已知函数满足对任意的,都有成立,则a的取值范围是_________.
9.确定函数的单调性.
10.已知函数是定义在上的减函数,且满足,,若,求的取值范围.
错题卡题号错题原因分析。
高二数学教案:数的单调性教案(答案)。
一、课前准备:
1.(1),单调增区间,,单调减区间,
(2)单调,单调区间。
2.单调性,同则增异则减。
3.(1)定义法(2)图象法(3)导函数法。
【自我检测】。
1.2.增3.和4.
5.6.
二、课堂活动:
【例1】。
(1)(2)(3)(4)。
【例2】证明:设。
【例3】(1)证明:
(2)解:
三、课后作业。
1.2.3.4.
5.减函数6.7.8.
9.解:定义域为,任取,且。
10.解:
2023年高二数学教案全套(模板16篇)篇八
重点与难点分析:
本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)由“先教后学”转向“先学后教。
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力。
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教法建议:
由“先教后学”转向“先学后教”
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力。
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的.多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。
这里注意两点:
一是给出题目后先让学生独立思考,并按教材的形式严格书写。
二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
2023年高二数学教案全套(模板16篇)篇九
课 题:综合练习:背心制作。
教学目标:
1通过综合训练培养学生的动手操作能力。
2运用学习的方法耐心大胆地剪贴制作背心。
3促进学生的左右脑协调发展。
教学重点:综合训练。
教学难点:制作方法。
教学过程:
直接入题。
前几节课我们学习了撕贴画、剪贴画,今天我们将学习用剪贴、撕贴的方法制作背心。(板书课题:综合练习:背心制作)。
方法步骤。
1. 将大张的挂历纸两张粘贴形成一张长的大纸。
2. 将粘贴好的挂历纸对折。
3. 用剪刀剪出领口和袖子。
4. 在前胸和后背处粘贴图案(可用撕贴画的方法也可用剪贴的方法)。
实践操作。
在学生实践操作的过程中为学生提供样品资料,强调集体合作,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:画小熊。
教学目标:
1通过训练使学生掌握圆形的方法。
2运用学习的方法并添加特征练习画小熊。
3培养学生创造性思维,添加小熊身子和动作。
教学重点:小熊的特征。
教学难点:添加身子和动作。
教学过程:
直接入题。
这节课我们学习画可爱的小熊。(板书课题:画小熊)。
分析特征。
小熊的头是圆形的,圆圆的耳朵、圆圆的眼睛和鼻子。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:画熊猫。
教学目标:
1通过训练使学生掌握圆形组合的.方法。
2运用学习的方法并添加特征练习画熊猫。
3培养学生创造性思维,添加小熊猫身子和动作。
教学重点:熊猫的特征。
教学难点:添加身子和动作。
教学过程:
直接入题。
这节课我们学习画可爱的熊猫。(板书课题:画熊猫)。
分析特征。
小熊猫的头是圆形的,圆圆的耳朵、圆圆的眼睛和鼻子。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:画花猫。
教学目标:
1通过训练使学生掌握圆形组合的方法。
2运用学习的方法并添加特征练习画花猫。
3培养学生创造性思维,添加小熊身子和动作。
教学重点:花猫的特征。
教学难点:添加身子和动作。
教学过程:
直接入题。
这节课我们学习画可爱的花猫。(板书课题:画花猫)。
分析特征。
小花猫的头是圆形的,圆圆的耳朵、大大的圆眼睛和小鼻子。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:画玩具。
教学目标:
1通过训练使学生掌握图形组合的方法。
2通过观察分析了解玩具的特征,概括基本形。
3初步认识形与形之间的关系,发展学生的创造性思维。
教学重点:玩具的特征。
教学难点:形与形之间关系的认识。
教学过程:
直接入题。
这节课我们学习画玩具(板书课题:画玩具)。
观察方法。
从整体出发,认识大的形状,对不规则的概括成近似的基本形。由于学生的认知水平的限制,应注意引导,学生往往只注意物体的结构,而忽视结构之间的相互关系,一种内在的关系,教师应该对学生加以引导,可采用幻灯复合片的形式说明问题,揭示事物相互联系的实质。
以圆形概括玩具大猩猩的结构,包括方向、大小位置等。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:画狮子。
教学目标:
1通过训练使学生掌握图形组合的方法。
2运用学习的方法并添加特征练习画狮子。
3培养学生创造性思维,添加狮子动作。
教学重点:狮子的特征。
教学难点:添加身子和动作。
教学过程:
谈话导入。
同学们!你们有没有发现在我国古代建筑中,有一种动物经常出现在门前,它象一个卫士庄严地守在门前,你们知道这种动物是什么吗?对了它就是狮子。下面我们来欣赏几张幻灯片(这尊狮子就是北京太和门前的大铜狮,它极其夸张地表现出雄师的威严和神圣。)。这节课我们学习画可爱的狮子。(板书课题:画狮子)。
分析特征。
狮子的特征突出表现在它的头部特征,头可以概括成圆形,眼睛可以概括成圆形,鼻子比较大,嘴部有着猫科动物的相同之处,上唇有胡须。前肢比较粗壮,后肢发达,雄师头部的毛较长而且美丽。身体皮毛呈近似土黄-金黄色。
方法步骤。
1. 安排位置,确定头部及身体的大小比例。
2. 利用基本形概括狮子的形体特征。
3. 用铅笔轻松勾画起稿。
4. 用较重的颜色勾边。
5. 涂色。
6. 调整、添加背景。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
2023年高二数学教案全套(模板16篇)篇十
教学目标。
1、知识与技能:
(1)推广角的概念、引入大于角和负角;
(2)理解并掌握正角、负角、零角的定义;
(3)理解任意角以及象限角的概念;
(4)掌握所有与角终边相同的角(包括角)的表示方法;
(5)树立运动变化观点,深刻理解推广后的角的概念;
(6)揭示知识背景,引发学生学习兴趣;
(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
2、过程与方法:
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情态与价值:
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。
教学重难点。
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。
难点:终边相同的角的表示。
教学工具。
投影仪等。
教学过程。
【创设情境】。
我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。
【探究新知】。
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点。
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。
3.学习小结:
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。
课后习题。
作业:
1、习题1.1a组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
板书。
略
2023年高二数学教案全套(模板16篇)篇十一
例1解关于x的不等式 .
例2解关于x的不等式 .
例3解关于x的不等式 .
例4解关于x的不等式
例5 满足 的x的集合为a;满足 的x
的集合为b 1 若ab 求a的取值范围 2 若ab 求a的取值范围 3 若ab为仅含一个元素的集合,求a的值.
(二)函数的最值与值域
例6 求函数 的最大值,下列解法是否正确?为什么?
解一: ,
解二: 当 即 时,
例7 若 ,求 的最值。
例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.
例9 设 且 ,求 的最大值
例10 函数 的最大值为9,最小值为1,求a,b的值。
1.
2. , 若 ,求a的取值范围
3.
4.
5.当a在什么范围内方程: 有两个不同的负根
6.若方程 的两根都对于2,求实数m的范围
7.求下列函数的最值:
1
2
8.1 时求 的最小值, 的最小值
2设 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求证: 的最小值为3
10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和
高各取多少时,用料最省?(不计加工时的损耗及接缝用料)
2023年高二数学教案全套(模板16篇)篇十二
第一单元位置与方向(7课时)。
学生在日常生活中对东、南、西、北等方向的知识已经积累了一些感性的经验,并通过第一学年的学习,已经会用上、下、左、右、前、后描述物体的相对位置。
本单元在此基础上,使学生学习辨认东、南、西、北、东北、西北、东南和西南八个方向,并认识简单的路线图。
例1使学生认识东、南、西、北四个方向,能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向。
例2使学生知道地图上的方向。
例3使学生会看简单的路线图(四个方向),并能描述行走的路线。
例4使学生认识东北、东南、西北、西南四个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
例5使学生会看简单的路线图(八个方向),并能描述行走的路线。
二、教学目标。
1.通过现实的数学活动,培养学生辨认方向的意识,进一步发展空间观念。
2.结合具体情境,使学生认识东、南、西、北、东北、西北、东南和西南八个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
3.使学生会看简单的路线图,并能描述行走的路线。
三、教学时间:7课时。
第1课时。
教学内容:例1及练习。
学习目标:。
1、结合具体情境,使学生认识东、南、西、北四个方向,能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向。
2、培养学生良好的观察能力。
教学重点:使学生认识东、南、西、北四个方向。
教具准备:东、南、西、北卡片。
教学过程:。
一、导入新课:。
1、创造情景让学生说说“前、后、左、右、向左、向右、向后转”。
复习和感受方位。
2、组织学生活动:面向黑板,指一指前、后、左、右。
3、师:“谁认得东、西、南、北方向?你是怎样认识的?”
4、出示课题:东西南北。
二、新知:。
1、早晨,太阳从哪边升起?引出东。
2、指一指哪边是东?教室的东边有什么?(黑板)。
3、东和西是相对的,那西边是哪边呢?教室的西边有什么?
4、组织全班活动,起立,指一指东和西。
指左边练习表达:这边是北。
指右边:这边是南。
练习用教室的北和南各有什么说一说?
5、完成书本填空和做一做:。
出示例1挂图:。
*图书馆在操场的东面,体育馆在操场的()面。
教学楼在操场的()面,大门在操场的()面。
完成“做一做”
三、巩固练习:。
1、完成练习一第2题。
先观察,你从对话中了解到什么?(可以确定了两个方向:北和西)。
你能说说哪边是东、哪边是南吗?说说房间是怎样布置的?东南西北方向各有什么?
2、在教室玩“走方向的游戏”。
3、小组讨论:你怎样记住我们学校的东西南北方向?各个方向各有什么?
4、小组讨论:你怎样记住我们南宁市的东西南北方向?(琅东、西乡塘、江南区、城北区)。
5、背儿歌:。
早晨起床面向太阳,前边是东后边是西,左边是北右边是南。
四、小结。
课外作业:认方向。
第2课时。
教学内容:例2、例3及练习。
目标:。
1、使学生知道地图上的方向。
2、使学生会看简单的路线图,并能描述行走的路线。
3、进一步培养学生的空间观念。
重点:使学生会看简单的路线图,并能描述行走的路线。
过程:。
一、复习:。
1、汇报课外认方向的情况。
2、说说教室和校园的东西南北各有什么。
3、玩“认方向”的游戏。
二、新课:。
(一)例2:。
1、观察第3页的校园图,你能画出校园的示意图吗?怎样画,能让别人看懂方向?
2、学生同桌合作画。
3、交流汇报:把学生画的多种情况展示出来。
4、请大家观察这几种不同的示意图,你觉得怎么样?(没有统一的标准,太乱了。)。
5、为了方便交流,地图通常是按“上北下南、左西右东”绘制的。
现在,你能按这个要求画出示意图吗?并注意标上“北”的方向。
6、学生独立绘制“上北下南、左西右东”的示意图。
(二)例3:。
1、观察例3图,你是怎么找到“北”边的?(图上标有)。
2、两个小朋友在做什么?
3、少年宫怎么走?请你先用手指出路线图,同桌互相看看指对了吗?
4、同桌互相说:。
去体育馆怎么走?
去医院怎么走?
去商店怎么走?
去电影院怎么走?
三、巩固练。
1、认一认地图上的方向:(挂图)。
2、做一做:。
从图上获知“北”,根据“上北下南左西右东”练习指一指。
完成问题。
四、总结:。
在这节课中你学会了什么?对今后的生活有什么帮助?
第3课时。
教学内容:综合练习。
学习目标:。
1、使学生进一步巩固对东西南北方向的认识。
2、进一步熟练根据路线图描述行走路线。
过程:。
一、练习:。
1、谁来说说前面两节课的学习,你学会了什么?
2、老师给知一个方向(邮局在百货大楼的东面),学生说出其他的3个方向。
3、看图说方位:出示挂图,同桌互相说说谁在谁的哪一边。
4、分组活动:送…回家(用东西南北卡片)。
二、综合练。
1、观察第2页天安门广场图,请根据示意图指出东西南北。
2、你能说说这幅天安门广场图中哪个建筑物分别在哪边吗?
3、第6页第3题:。
4、第7页第4题:。
观察中国地图,先找出“五岳”。
现在告诉你中岳是嵩山,你能根据这个说说其他的山分别是什么“岳”吗?比一比,谁说得对!
讲评。
5、引导学生阅读:你知道吗?
三、总结。
四、课后。
在中国地图上找一找东西南北著名的旅游区。
第4课时。
教学内容:例4以及练习。
学习目标:。
使学生能结合具体情境认识东北、东南、西北、西南四个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
重点:。
使学生能结合具体情境认识东北、东南、西北、西南四个方向。
教、学具准备:指南针。
过程:。
一、复习:。
1、画一画方向示意图:。
2、我们知道了这四个方向,那么,每两个方向之间又称为什么方向呢?今天我们一起来认识。
二、学习新知:。
1、出示例4图,观察:多功能厅在哪两个方向之间?
2、这个方向称为“东北方向”。
3、我们知道了“东北方向”,你能说出下面的这几个方向是什么吗?
4、我们又认识了“东北、东南、西北、西南”,你打算怎样记住这四个方向?请你把他们记下来。
5、请自己画一个标有8个方向的方向示意图。
6、观察例4图:请说说校园的东北、东南、西北、西南各有什么?
三、练习:。
1、说说生活中什么时候会用到方位的知识?
2、第10页第1题:在黑板上标出自己家的位置。
四、总结:。
这节课中你有哪些收获?你会用到这方面的知识吗?
第5课时。
内容:第9页例5以及练习。
目标:。
1、使学生会看简单的路线图(八个方向),并能描述行走的路线。
2、培养学生的观察能力和空间观念。
重点:。
使学生会看简单的路线图(八个方向),并能描述行走的路线。
过程:。
一、导入:。
1、请用手势指出你认识的8个方向,同桌互相看看指对了吗?
2、老师说方向,你们就用手指向那边方向:北、西南、东北、西、东北等。
3、出示中国地图:请你分别指出东、西、南、北、东北、东南、西北、西南这8个地区。
二、新知:。
1、出示例5挂图:这是什么图呢?(动物园导游图)。
请认一认图上画有哪些动物馆?
2、请在图中指出8个方向:。
3、解决问题:。
熊猫馆位置?从大门出发可以怎样走?
(在动物园的西北角,可以先往北走到狮山,再向西北走。)。
还可以怎样走?也请你把行走路线描述出来。
指名到黑板的挂图前说说行走路线。
同桌互相提问各个馆的行走路线,比一比,谁说得准!
5、小结:如果从不同的路线走,说的`方向就有所不同了。
三、巩固练习:。
1、说一说,1路公共汽车的行车路线。
2、第10页第2题:。
全班读题:熟悉小健的描述。
根据小健的描述,把那些游乐项目用序号标在适当的位置上。
讲评。
四、总结:。
收获?指导学生对学习进行评价。
第6课时。
内容:位置与方向的综合练习。
目标:。
1、通过综合练习,进一步培养学生辨认方向的意识、发展空间观念。
2.使学生熟悉的认识东、南、西、北、东北、西北、东南和西南八个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
3.使学生会看简单的路线图,并能描述行走的路线。
重点:。
认识8个方向、会看简单的路线图并能描述行走的路线。
过程:。
一、练习:。
1、说一说你认识的8个方向:同桌互相考一考。
2、画出一个标有8个方向的方向示意图,比一比,谁画得准!
3、老师说方位,学生指出来。
二、综合练习:。
1、11页第3题:。
2、11页第4题:。
3、学生独立完成12页的第5题:。
4、同桌合作完成12页第6题。
三、总结:。
这一单元的学习,你有什么收获?对你的学习和生活有什么用处呢?还在什么地方有用呢?
第7课时(单元学习检测)。
数学三年级下册第一单元“位置与方向”测试题。
一、填空题:。
1、我们认识了8个方向,是哪些呢?请在下面的括号里写出来。
()。
2、地图通常是按“上北(),()”来绘制的。
2023年高二数学教案全套(模板16篇)篇十三
(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法。
通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观。
通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
2023年高二数学教案全套(模板16篇)篇十四
本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点。
1.教学重点:椭圆的定义及其标准方程。
2.教学难点:椭圆标准方程的推导。
(三)三维目标。
1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
三、教学程序。
1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6.例题讲解:通过例题规范学生的解题过程。
7.巩固练习:以多种题型巩固本节课的教学内容。
8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。
9.课后作业:面对不同层次的学生,设计了必做题与选做题。
10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。
四、教学评价。
本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。
2023年高二数学教案全套(模板16篇)篇十五
学生知识现状的分析:
小学一年级的教学内容主要分为三块,体育基本常识、基本活动和游戏。体育常识主要包括体育课的作用、正确的坐立行姿势;基本活动包括基本活动包括队形队列、基本体操、走、跑、跳、投、滚翻、攀爬、韵律活动和简易舞蹈;最后一块是适合低年级小朋友的一些简单游戏。体育锻炼与健康的基本知识与技能很不标准,我们要进一步的教学,给学生进行练习,为学生提高技能,增强身体健康,打下良好的基础。
本学期教学的主要任务和要求:
本学期使学生获得一些运动和健康的`基础知识,初步学习和完成简单的组合动作,提高运动技能,对队列与队形,正确的动作资势,身体体重良好的锻炼,练习坐位体前屈、立定跳远达标,并引导学生形成积极向上,团结合作,竞争进取的精神。
重点与难点:
重点:练习坐位体前屈、50米、立定跳远达标。
难点:通过游戏发展学生身体灵敏、协调性、耐力和体能,以及体育运动方法与技巧。
提高教学质量的措施:
建立和谐的师生关系,创新教学方法,让学生在快乐中学习,得到知识与建康的提高。
目的:
通过体育基础知识与游戏相结合的学习,培养学生锻炼身体的学习兴趣,提高学生学习体育运动的技能技巧;利用游戏来融合体育知识与技能,提高学习能力,正确引导学生建立人生观、思想观,使学生养成正确的道德观。
任务:
全面促进学生的身心健康,培养学生运动技能与技巧,树立好正确的人生观、世界观,献身体育事业,提高学生的全面素质。
2023年高二数学教案全套(模板16篇)篇十六
课 题:画刺猬。
教学目标:
1通过训练使学生掌握概括基本形的方法。
2运用学习的方法并添加特征练习画刺猬。
3培养学生创造性思维,添加适当的背景。
教学重点:折线的节奏。
教学难点:添加背景。
教学过程():
谈话导入。
有一种小动物,它长得很奇怪,浑身是刺,胆子却很小,你一靠近它,它就团成一团,人们确很喜欢它,你们知道它是什么吗?对了它就是可爱的小刺猬,这节课我们就来学习画小刺猬(板书课题:画刺猬)。
步骤方法。
1. 刺猬的身体可以概括成半圆形。
2. 它身上的刺可用折线来概括。
3. 在图画纸上确定位置。
4. 先画半原形。
5. 然后画折线,注意折线的`节奏。(可做单独的画线训练)。
6. 涂色并添加背静(注意与主体的和谐)。
实践操作。
在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
同学们!你们一定都见过美丽的孔雀吧。它有美丽的羽毛,尤其是它的尾巴,当孔雀开屏的时候,那五光十色的羽毛更是美丽动人。这节课我们来学习用折纸的方法表现孔雀(板书课题:折纸与剪贴-孔雀)。
方法技巧。
将彩色手工纸裁成正方形,折成扇子形,然后将尖的一端向上翻折,这样头与尾就折出来了,然后用彩色纸剪贴羽毛。(演示方法、步骤)。
折纸方法:
1. 将正方形的对角重合对折。
2. 将正方形相邻的两条边与对称轴重合。
3. 再一次重合。
4. 翻折尖部。
5. 再一次翻折尖部。
实践操作。
在学生实践操作的过程中为学生提供范样资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。
课 题:我爱动物。
教学目标:
1通过教学使学生产生热爱自然生态,保护动物的思想感情。
2综合运用学习的方法并添加特征练习画动物。
3培养学生创造性思维,添加适当的背景。
教学重点:运用基本形进行概括。
教学难点:动物特征。
教学过程():
欣赏导入。
同学们!今天我们首先来欣赏一组动物的图片,看你喜欢那些小动物,并请你们记住它们的特征,以便我们今天把它画下来。
引导分析。
为学生提供大量的图片和电视资料,挑选他们喜爱的小动物引导分析概括基本形,分析动物的特征。
实践操作。
在学生实践操作的过程中为学生提供范样资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。
课堂小结。
谈收获、谈体会,总结经验。