范文可以帮助我们更好地理解和掌握写作的要领,提高我们的写作水平。这些范文范本展示了一些优秀总结的特点和写作技巧,通过学习它们,我们可以更好地提升自己的写作水平。
医疗大数据的论文(优秀13篇)篇一
1.注重精神产品成本核算。
精神产品和物质产品的价值表现不同,同样的“所费”不一定取得同样的“所得”。高等学校的主要成果是人才不是物质产品,其价值就不能单纯用所耗活劳动和物化劳动的价值来表达。对于精神产品如何核算成本也只能是借助于“成本”的概念,在核算时与物质产品有其很明显的特殊性。物质生产部门对无意识的物体进行加工,投入多少活劳动与物化劳动一般是有固定比例的,其成本比较容易控制,而对人才的培养则不同,它受到多方面因素的控制和制约,如社会制度、社会环境、经济条件、科学文化水平等。高等学校成本核算不能单纯地被认为是费用的归集,它是指为了加强经济管理,培养合格的毕业生,在校期间发生的各种费用要有一个确定的标准来衡量。在评估上既要看到成本水平,又要考虑人才的质量和数量。
2.注重人才投资的预算。
通常计算大学生某年平均培养费用的方法是以某年经费实际支出数除以该年在校学生的平均人数计算,也只是人才投资的预算内部分,不能被认为是培养大学生的成本,因为基建投资、其他各项一次性投资都未反映在年终决算中,也就是说没有反映在当年的经费支出数之内;另外其他各项投资虽然都是为了开发学生的智力却不全为当年学生受益。所以高等学校所要核定的成本不象企业计算的那种“全部成本”,也不是为培养学生所耗费用的简单总和,而是一种部分的活动成本。高等学校的成本概念既是广义的,又是特指的。它是指高等学校为培养每一个合格的大学毕业生,在校期间发生的通过学校管理活动能够有效控制的那部分费用支出,全部成本法不能适用高等学校的成本核算,而活动成本法则能满足和适应高等学校成本核算的要求。
二、高等学校成本核算方法———“活动成本法”
活动成本法起源于美国本世纪30年代,在国外广泛运用,其主要特点是:第一,经济责任明确,便于成本管理。一般地讲活动成本是各基层单位的可控成本,固定成本是管理当局的可控成本。第二,没有强制性的统一会计制度,成本计算简单固定成本的必分摊。第三,活动成本法是一种部分成本法,它与全部成本法相对称,活动成本法是包括变动费用,只有与业务量有关的变动费用才构成产品的成本要素。可见,这些特点都是满足高等学校成本核算特点和管理要求的,在运用中可以扬其长、避其短,及时总结经验,为高等学校科学管理开辟一条新路子。深入研究成本习性,是正确划分活动成本和固定成本、用好活动成本法的关键所在。应用活动成本法的前提条件是将成本按其习性划分成活动成本和固定成本。所谓成本习性是指成本额对业务量总数的依存关系。凡成本总额随业务量的增减成正比例变动的是活动成本,凡成本总额不随业务量变动,在短期内相对稳定的是固定成本,介于两者之间的是混合成本,对于混合成本还要采取一定方法继续分解。这是关键的一步,也是困难较大、问题较多的一步。
从高等学校的经费分配角度来看,除一次性补助、基本建设投资外,基本上是“人头经费”,即上级主管单位按照当年在校学生人数的平均数乘以一定的预算标准计算出来的。学校得到这笔经费后,再按照先保证人员经费后,根据财力情况安排其他的原则进行经费再分配。从经费使用职能看,高等学校的经费可大致分为三大部分,即人员经费、公用经费和专项经费。而人员经费和公用经费合在一起就是前面所说的“人头经费”。其中人员经费中的本专科学生助学金,公用经费中的公务费、业务费、其他费用等开支状况除了很大程度上取决于预算定额和学生人数外,还与管理部门的管理水平有着非常密切的关系,所以以上这几项应是活动成本,人员经费中的工资则不同,虽然它也包括在“人头经费”中,但就其详细的开支内容来看,它与当年在校学生人数没有密切关系,是学校开办就必须按期开支的约束性成本,这种管理体制和性质是由我国现行的人事制度和工资政策所造成的。由于它一般不受基层管理活动的影响,所以是固定成本。人员经费中的补助工资、职工福利费、差额补助费等,也都是固定成本。高等学校的房屋、设备等固定资产具有同企业一样的性质,在其使用过程中能连续在若干个生产周期内发挥作用,并保持原有实物形态,其价值随着磨损程度逐渐消耗,并且消耗的价值要求得以充分的补偿。高等学校的这种补偿是靠国家拨款来实现的,它包括在每年的设备购置费和修缮费中,可见高等学校每年的'设备购置费和修缮费是为了当年保持学校一定的规模和能力以及发展需要的支出,包括补偿和发展两部分,类似企业中的大修理基金、折旧基金和企业生产发展基金,因此从这点分析,这两项的实标开支作为当年学生的培养成本是完全没有道理的。解决的办法是实行固定资产折旧制度,实行后提取的折旧费和大修理费才近似反映学校当年为培养学生用于固定资产方面的实际耗费,但现行的财务制度是高等学校的固定资产不实行折旧,因而设备购置费和修缮费也应是固定成本。到此为止,对高等学校的全部成本按其习性做以下划分:
(1)固定成本包括:工资、补助工资、职工福利费、设备购置费和修缮费;
(2)活动成本包括:人民助学金、公务费、业务费和其他费用等。这里提到的费用只是国家教育投资的一部分,如象离退休人员费用、科研课题费(包括补助费)等未涉及,因为它们与当年学生培养无关,应另法核算。
2.消耗性开支应该成为高等学校成本要素重点。
活动成本法将高等学校的人民助学金、公务费、业务费、其他费用等消耗性开支作为成本要素重点加以核算控制,符合“尽可能节省各项消耗性开支,保证重点开支的需要”的原则。据统计,高等学校以上这几类开支占全部教育事业费的三分之一左右。由于它们都是纯消耗性的费用,因此它们的节约是完全意义上的节约,是应该花大力气管好用好的。值得提到的是高等学校的广大财务工作者一直就比较重视对这类成本的控制,在实践中创造了许多行之有效的控制方法,只是由于没有重视从理论方面去总结,有了好经验,但因为是各自为政,自成体系,自立标准,不能说服人,在推广上受到了一定的限制。现在,活动成本法从理论上解决了这个问题。
3.成本资料可进行校际比较。
这是考核高等学校经济效益的指标之一。由于活动成本只将变动成本作为成本要素,故人才单位成本就等于总变动成本除以在校平均学生人数。这样计算排除了由于学校规模、投资、新老等因素不同而造成的成本差别,避免了按照传统方法(全部成本法)计算成本时最使人感到“问题多,而不好解决”的难题,为同类学校之间的成本比较提供了可能。一般地说,在同类学校中消耗性开支具有较大的共性,这部分费用消耗较低的应视为管理控制水平较高。目前各类高等学校消耗性费用存在较大的差异,除了地区、专业的原因外,主要是管理水平差异的反映。今后如果定期进行校际间横向比较,相信定会有成效。
4.活动成本法可以建立在高等学校现行会计科目上。
财务会计系统地提供单位管理活动的原始记录,活动成本法是将财务会计提供的资料作进一步加工和引伸,使之更好地满足管理需要的一种先进的成本核算办法。这里运用的活动成本法是按“会计科目”来划分活成本和固定成本的,为的是把它同现行的会计制度联系在一起,它虽然有一定的假定性,但符合高等学校的成本特点和管理要求。特别值得一提的是,免去了计算成本时将固定费用分摊的繁琐计算,在增加工作量不多的情况下开辟了新的管理途径。
作者:姚航单位:辽宁医学院财务处。
医疗大数据的论文(优秀13篇)篇二
利用数据挖掘技术,比如可以对学生访问情况进行分析,跟踪、了解学生出勤情况。还可对学生年龄等个人情况进行分析,了解学生的组成、结构,为合理地安排课程设置提供依据。通过对学生考试情况的分析,并结合出勤情况,可作为考查学生学习的情况,为合理地评估学生综合素质提供依。对于挖掘出来的规则信息可以利用可视化技术,以图表或曲线等形式提供给教师,以使教师能充分利用学生的问题资源,从而提高教学质量。另外,数据挖掘可以应用于网上的考试系统,对考生情况和他取得的成绩进行挖掘,以帮助教师在以后的.教学中更好地让学生掌握知识。
3.2学生的学习特征。
学生特征包括两个方面:一是学习准备,一是学习风格。学习准备包括初始能力和一般特征两个方面。学生的初始能力是指学生在学习某一特定的课程内容时,已经具备的有关知识与技能的基础,以及他们对这些学习内容的认识和态度。学生的一般特征则是指在学习过程中影响学生的心理、生理和社会的特点,包括年龄、性别、年级、认知成熟度、智力才能、学习动机、个人对学习的期望、生活经验、文化、社会、经济等背景因素。学生的学习风格与学习活动有着密切的关系。对学生感知不同事物、并对不同事物做出反应这两方面产生影响的所有心理特征构成了学习风格。
利用数据挖掘功能分析学生特征,并在此基础上组织学习内容、阐明学习目标、确定教学策略、选择教学媒体,为学生创造出一个适合其内部条件的外部学习环境,使有效学习发生在每个学生的身上。
3.3预测学生和教师行为发生。
管理信息系统中记录着有关学生与教师在教学中发生的各种教学事故以及典型教学事例等教学运行信息,利用数据挖掘的关联分析与演变分析等功能,寻找师生各种行为活动之间的内在联系。如“当存在a,b时可以推出’c,这样的规则,即当有a行为和b行为发生时,还会有c行为。在教学过程中,如果发现学生或教师已有a,b行为时,马上可以分析其产生c行为的可能性,及时制定策略促进或制止c行为的发生。
3.4合理设置课程。
在学校,学生的课程学习是循序渐进的,而且课程之间有一定的关联与前后顺序关系。在学一门较高级课程之前必须先修一些先行课程,如果先行课程没有学好,势必会影响后续课程的学习。另外,同一年级学习同一课程的不同班级,由于授课教师、班级文化的不同,班内学生的总体成绩相差有时会很大。利用学校教学数据库中存放的历届学生各门学科的考试成绩,结合数据挖掘的关联分析与时间序列分析等相关功能,就能从这些海量数据中挖掘出有用的信息,帮助分析这些数据之间的相关性、回归性等性质,得出一些具有价值的规则和信息,最终找到影响学生成绩的原因。在此基础上,对课程设置做出合理安排。
3.5评价学生学习情况。
学习评价是教育工作者的重要职责之一。评定学生的学习行为,既对学生起到信息反馈和激发学习动机的作用,又是检查课程计划、教学程序以至教学目的的手段,也是考查学生个别差异,便于因材施教的途径。
特别是对成绩管理数据库进行挖掘,其数据来源于成绩管理数据库,挖掘的任务就是从用户指定的数据库中以不同的角度或不同的层次上采掘出一系列的统计结果,如分布情况、关系,对比、显著性检验等,采掘结果用交叉表,特征规则,关联规则,统计的曲线、图表等表示,所以采用统计分析方法具有简单、方便、直观等优点,最为合适。
因此对学生学习行为和综合素质进行评价,一般采用模糊论中的模糊综合评判及模糊聚类的方法,对评价结果采用了对定性和定量指标加权平均算出综合素质评价得分并排名的方法,而且由于学生综合素质的评价指标是动态变化的,往往选用动态聚类法对评判结果进行动态聚类分析。
3.6评价教学质里。
教学评价是根据教育目标的要求,按一定的规则对教学效果做出描述和确定,是教学各环节中必不可少的一环。教学评价可以通过校园网收集学生对任课教师所讲授、辅导课程的意见、评价。有关学生座谈意见、学生打分评价、平时各项教学检查、相应课程期末考试班级成绩汇总等都是教学评价的内容,把这些数据要作为教师教授相应课程的档案数据全部存人数据库。
利用数据挖掘对数据库中有关教学的各项评价进行分析处理,可以确定教师的教学内容的范围和深度是否合适;选择的教学媒体是否适合所选的教学内容和教学对象;讲解的时间是否恰到好处;教学策略是否得当等。从而可以及时的将挖掘出的规则信息反馈给教师,以期更好地提高其教学水平,更好地服务于学生。
4结束语。
总之,随着信息量的急剧增长和对信息提取的更高要求,现在我们很难再依照传统方法在海量数据中寻找决策的依据,这就必须借助数据挖掘去发掘数据中隐藏的规律或模式,为决策提供更有效的支持。虽然数据挖掘作为一种工具,它永远也不能替代教师的地位,但是它可以为教师的决策提供科学的依据。数据挖掘技术本身就是人们大量实践的结晶,它为建立传统教学中很难获取或不可能获取的模型提供了捷径。
医疗大数据的论文(优秀13篇)篇三
大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。
近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。
对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。
正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。
国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。
2-1营销活动将更科学化。
大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。
2-2营销活动将更个性化。
随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。
2-3企业营销组织机构和人员工作职能将围绕数据展开。
大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。
2-4营销活动将可预测。
大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。
总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。
3大数据时代面临的挑战。
3-1数据的质量问题和数据人才的缺乏。
大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。
3-2数据的复杂化难以管理。
当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。
3-3公众和个人隐私问题日益凸显。
当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。
3-4数据精准性与服务精准性不对称。
尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。
4大数据背景下营销领域伦理问题的解决途径。
大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。
4-1国家应当制定相应的法律法规来约束不法行为。
由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。
4-2通过行业自律来约束自身的伦理机制。
由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。
5结论。
大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。
医疗大数据的论文(优秀13篇)篇四
随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。
信息化;招标代理;企业管理。
第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。
大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。
第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。
今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。
作者:张贤恩高秀英单位:枣庄市团校。
[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.
医疗大数据的论文(优秀13篇)篇五
大数据时代的教育管理在履行教育管理职能的过程中将更加凸显管理的及时性、前瞻性、区分性、整合性、权变性等特点,为教育管理的变革带来了大机遇。
2.1利用数据挖掘技术改革教学模式和教学方法。
高等学校是培养人才的场所,教育的出发点是希望通过知识的传授对学生成长产生影响,而知识的形成是一个长期的过程,模式一旦固定下来,改变就变得缓慢。在传统的教育过程中,对学生的影响大部分都是预先设定好的,在教学计划的指引下,教师与学生按部就班地开展教学活动。大数据完全有可能为这种教学活动重新注入新的活力,利用数据挖掘技术,对在纷繁复杂的日常教学中产生的数据进行综合分析,归纳出具有预测性的内容。例如,可以了解什么样的教学方法更适合学生的实际;当前上课的内容在哪个时间段更容易被学生接受;每个学生通过怎样独特的方式更容易掌握当前所学的内容;用什么方式巩固提高知识更有效等等。甚至还可以通过对教学行为中产生数据的分析,归纳出学生最近的学习、思想和行为倾向,有效地预防教学活动中不当行为的出现。应用教学数据分析,一方面,课程教学活动会根据数据分析产生的新情况进行调整;另一方面,新的知识与新的教学方法会随时被归纳出来,学习的内容更具有前瞻性。
2.2重视学习分析,促进教与学的融合。
学习分析主要是对学生在学习中所形成的数据进行研究,对学生未来的学习表现以及潜在的问题进行合理的预测。学习分析在高等教育中的应用具有很多优势,在解决目前高校有关学习和教育经验等诸多问题时具有巨大潜力。学习分析包含了学生在学习方面有何特点、学习方法怎样、习惯怎样、兴趣如何,成绩如何等内容,通过校园的信息化系统不仅能获取学生的显性行为数据,如作业完成的情况、实验技能的情况、考核结果及考试成绩,而且还能获取学生的隐性行为数据,如参加课外及社团活动、互联网社交情况等,根据数据可以预测建立学生在课程学习过程中额外教学资源支持的需求模型、测量学生特别的潜质、构建能够改进和提高教学效率的弹性模式等,让学生拓展在当前学习环境下的理解能力,鼓励学生对自己的课程学习负责,增强学生自主管理学业发展的能力,为学生创造个性化的教育条件。对学生来说,学习分析能够让他们更好地了解自己在课程学习中所存在的问题,同时可以对自己的学习行为及习惯进行优化,掌握学习的主动权,自主开展个性化的学习;对于教师与管理者来说,可以利用学习分析结果对课程质量进行综合评估,从而能更加有效地改进教学方法、教学手段和教学内容,促进教与学的融合。
2.3不断提升教师的综合素质,重视数据分析能力的培养。
教师的综合素质包含许多内容,以往我们强调的是专业知识,因为这是教师展开正常教学,保证基本的教学品质的必备条件。不可否认,教师的专业知识是影响教学活动最重要的`因素,也是学生衡量一个教师优劣的重要标准。但在大数据时代,未来的教学活动,教师除了要具备丰富的专业知识外,还需掌握一项重要的技能,即对教育数据的分析和研判,这或许成为教师在教学活动中关乎成败的重要因素。大数据时代下教学活动将产生海量的教育数据,如何从中寻找出具有教学价值的内容,成为教师在教学活动中一项非常重要任务。通过对教育数据的挖掘和处理,教师能够对学生各种相关数据进行综合分析、关联,并能及时采取应对措施使教学活动更加适应学生的需求,这样既能激发学生的学习兴趣,提高学习成绩,也能促进学生身心健康发展。因此,为了迎接大数据带来的新挑战,高校要做好教师队伍的建设工作,积极培养教育数据分析人才,应该尽早开设数据分析课程,以适应社会的发展和市场的需要。大数据技术的兴起,高等教育将面临着极大的挑战,高等教育能否抓住机遇持续发展,直接影响到国家长远的发展与兴衰。随着信息时代的发展,高等教育中对信息技术的应用也将越来越先进,越来越广泛,大数据技术的推广和应用已成燎原之势,大数据管理必将渗透到高等学校教学管理的各个方面。同时,大数据技术将进一步促进学校和社会的互动,使高校和社会之间的关系更加紧密,学校教育与社会发展可以相互支撑,学校可实时把握社会需求,根据社会的实际需求来完成和制定教学规划和进行相应的改革,而社会也能及时掌握高等教育人才培养的新动向,及时把新的教育成果应用到各个领域的生产、管理等过程当中。总之,通过大数据管理,学校、学生、社会三者能有机地联系在一起,相互依赖,相互影响,相互促进,共同进步,为构建和谐社会做出应有的贡献。
医疗大数据的论文(优秀13篇)篇六
:本文首先对大数据的基本含义进行概述,从营销交流较为单一、营销决策不合理、缺少客户需求分析三个方面入手,对传统网络营销中存在的主要问题进行解析,并结合大数据给网络营销带来的影响,提出大数据在网络营销分析中的应用对策。
随着大数据时代的来临,越来越多的企业开始把大数据技术运用其中,在互联网背景下,大数据技术作用得到了充分挖掘,让企业获取了一定成效。大数据在网络营销中应用较为广泛,基于大数据背景下的网络营销已经成为了现代化营销的核心内容,精准营销在大数据中实现了升华。利用大数据技术,不但能够有效提升营销的精准性,同时还能给企业今后发展提供良好条件,对企业稳定发展起到了重要意义。下面,本文将进一步对大数据在网络营销分析中的应用进行阐述和分析。
西方国家相关人士普遍认为,大数据作为一种具备分布特性的数据集,主要借助电子技术、网络技术等实现数据采集,自身含有一定的规模性和多样性。在大数据背景下,通过战略部署,不但可以便于诸多数据信息的采集,同时还能在这些数据的引导下实现专业处理[1]。换句话说,假设把大数据看作一个产业,要想获取理想的效益,就要提升大数据“加工”能力,借助“加工”达到数据“保值增值”的目的。大数据示意图见图1:
随着互联网水平不断提升,网络营销成为了当前企业广泛应用的营销方式。站在学术角度来说,大数据对企业网络营销发展起到了重要影响,并提供了一定发展空间。首先,促进网络营销方式的改变。随着大数据时代来临,给网络营销方式造成了巨大转变,大会数据让网络营销由之前的粗放形式逐渐更改成集约形式,并朝着精细化趋势发展[2]。其次,对网络营销渠道的改变。大数据形成的基本要求在于人们对数据技术的应用和普及,形成数据的设备种类增多,人们可以借助较为快捷的设施实现采购。最为普遍的就是利用计算机或者智能手机进行网上交易,使得网络营销逐渐朝着移动互联网的方向改变。
3.1营销交流较为单一。
营销交流单一主要指,企业在开展网络营销工作时,过于重视借助邮件、微信等形式将营销信息传递到客户手中,没有对客户自身需求和建议进行收集。在这种情况下,诸多企业无法从基础上掌握客户实际要求,即便一些企业开展了客户信息采集工作,但是没有对其加以综合分析,无法对网络营销战略进行优化和完善,不能更好的把营销产品以及服务传递给客户。
3.2营销决策不合理。
在传统网络营销模式中,决策人员在设定营销战略过程中,一般是根据自身工作经验来设定,导致营销决策过于随意性。例如,部分企业在明确新产品营销战略过程中,因为没有对该产品历史营销信息进行采集,决策人员通常会凭借之前工作经验来实现战略部署。从实际角度来说,即便两种类型相似的产品,在产品特性以及营销方式上也会存在一些差异,面对的客户群体也大不相同[3]。由此可见,假设营销决策不合理,必将会给网络营销效果带来直接影响。
3.3缺少客户需求分析。
借助网络来开展营销工作时,因为相关技术有待完善,企业不能对客户自身需求加以综合分析。所以,企业需要向客户传递诸多营销内容来提升营销效果。针对客户群体而言,这些信息不仅无法让其获取具备较强价值的信息,同时还会给其网络交易造成一定影响,从而无法保证客户真实体验。
4.1优化网络营销方式。
4.1.1产品关联精准营销从产品关联精准营销角度来说,也就是通过对消费者消费需求情况,挖设部分消费关联产品放置在一起。例如,大部分商场在结构分布上,往往在第一楼设置大量的化妆品和电子产品,也就是结合男女消费群体消费需求,把化妆品和电子产品进行结合,以此达到两种产品营销的目的。这是因为在消费群体消费过程中,主要以男女一起消费为主,而女生在购买化妆品的过程中,男生对化妆品的认识和需求相对较少,为了满足男性消费者要求,通常会在化妆品周围安置电子产品柜台,便于不同消费群体消费,借助关联营销方式,提升销售量。4.1.2引擎精准营销随着大数据时代的来临,采用引擎营销方式能够降低消费者查找所需产品的时间和成本。而推荐引擎往往构建在海量数据分析基础上的互联网技术中。在引擎营销方式的作用下,可以结合消费者采购需求推送对应的产品,或者对已经购买产品的消费者推送其他类似产品。在给消费者提供良好的体验感受之后,可以达到快速推荐和营销的目的[4]。例如,某宝购物网站,在消费者采购一些产品之后,页面将会推送一些相似或者同种类型的产品等。4.1.3社交网络精准营销网络社交营销则是指,通过社交平台实现产品推送和营销,例如微信、微博等。社交网络消费群体之间存在一定的关联性,通过对网络连锁反应的挖掘,能够让营销效果更具合理性和规范性。例如,通过微博营销,借助粉丝经济效益实现产品推送。利用明星效应,将部分产品推送给微博用户,以此获取理想的营销效果。此外,可以通过建设品牌粉丝经济体系,提升消费群体粘性,调动消费群体再次购买意愿。社交网络精准营销示意图见图2:
4.2提升网络营销广告传播精准性。
在传统网络营销过程中,大部分企业一般采用较为粗放的网络营销方式,例如广告,这种方式将不能从基础上给企业创造理想的效益。所以,需要借助大数据技术,提升网络营销广告传播的时效性和精准性。首先,结合客户所在情景,推送对应广告。消费情景对客户消费有着直接影响,决定消费者采购行为。假设消费者在采购部分产品之后,随后消费者在网络采购时,根据前一次产品搜索情况而推送一些各种产品信息,将会让消费者存在一定的反感心理,影响其采购。因此,企业需要对消费者消费需求和情景进行分析,并以此推送更为精准的广告信息。其次,提升客户选择广告的自由性。在传统网络营销模式中,一般采用弹射广告窗的方式来吸引消费者,从而引发消费者不满[5]。在这种情况下,可以借助大数据技术创新网络广告推送方式和格式,提升推送的精准性。
4.3加强网络营销市场定位。
首先,加强客户数据分析,明确市场定位。在进行大量数据采集的同时,建立客户数据库。在此环节中,需要注意确保收集各项数据的真实性,借助多种方式和渠道,实现客户信息的收集整合。利用数据挖掘技术,对客户基本信息加以综合分析,掌握客户属性。并且,把营销产品属性和客户属性进行对比,对产品在营销市场中的占比和份额进行初步评估。其次,借助消费市场对市场定位精准性加以评估。要想将产品快速的营销到市场中,可以应用大数据技术在初步定位以后,利用消费市场,对定位方案加以综合评估。假设根据产品定位结合对其营销,可以获取较为理想的营销效果,则预示着企业营销产品在市场定位设定中较为精准,可以继续采取此营销方案。反之,需要对产品定位方案进行适当修整。最后,编制专业的客户反馈体系。编制客户反馈体系的目的有两点,第一,在营销产品初步定位过程中,经过市场考证,企业可以借助客户反馈体系对客户消费需求进行采集,尤其是产品营销的部分意见,根据客户情况对产品营销方案进行修整。第二,假设产品营销定位没有经过市场考证,企业可以利用客户反馈信息总结失败因素,给后续产品精准定位奠定基础。
4.4提高网络营销服务的个性化程度。
为了从基础上提升网络营销服务个性化水平,企业不仅可以借助大数据技术对客户个性化需求进行总结,同时还能给其提供针对性服务。首先,利用大数据技术掌握客户个性化需求。随着互联网技术的全面普及,企业可以借助网络实现对客户基本信息的采集。但是在此过程中,因为当前的网络管理水平有待提升,诸多信息真实性和精准性无法保证,甚至部分信息之间冲突较大。所以,企业需要借助大数据技术对客户需求进行了解,确保采集的各项信息具备真实性。并且,企业需要从采集的数据中挑取重要信息,以此减少数据分析成本投放。其次,加强个性化服务设计。要想合理设计个性化服务,企业应该从两个方面入手。第一,受到现实因素的影响,企业无法逐一对客户个性化需求进行核查和提供,这就要求企业对客户个性化需求相同处有所认识,结合共同性提供个性化服务[6]。第二,假设根据客户个性化需求提供对应服务,企业服务成本必将会随之提高。所以,企业需要对客户个性化需求加以具体分析,要求企业在给客户提供个性化服务的同时,也要确保不会给企业经济方面带来影响。
总而言之,通过应用大数据技术,可以有效提升产品竞争性和效率性。在开展网络营销工作时,把大数据技术运用其中,不但可以给企业创造理想的效益,同时也能给消费者提供良好的消费体验,以此提高营销效率和质量。所以,在网络营销过程中,企业需要时刻掌握营销发展动向,并借助大数据技术自身优势,对当前网络营销战略进行修整,从而提升我国网络营销水平。
[3]莎仁高娃.大数据背景下企业营销管理创新方法探讨[j].现代营销(经营版),2018(09):160.
作者:赵平。
医疗大数据的论文(优秀13篇)篇七
3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据时代》读后感。
老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。
张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。
董译雯老师说:在你我感叹《大数据时代》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!
张红杰老师说:很感谢校长给我们推荐了《大数据时代》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。
白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。
交流活动尾声,身为阅读《大数据时代》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!
此次活动从寒假期间倡导读《大数据时代》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!
医疗大数据的论文(优秀13篇)篇八
职责:
1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;
3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;
4、协助完成业务关键目标指标制定、目标达成过程管理。
任职资格:
1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;
4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;
5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。
它山之石可以攻玉,以上就是为大家带来的6篇《大数据论文范文大数据论文范文大全》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
医疗大数据的论文(优秀13篇)篇九
在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。
医疗大数据的论文(优秀13篇)篇十
近年来,随着科技的不断发展,医疗行业也迎来了数据化的飞速发展。健康医疗大数据的出现为医疗质量提升和疾病防治提供了有力的支持。作为一名医务工作者,我深切体会到了健康医疗大数据的强大实力和重要性。在与大数据相伴的工作中,我有着许多心得体会。
首先,健康医疗大数据为医学研究提供了宝贵的资源。过去,医学研究所依靠的主要是小样本、个案研究。然而,这种研究方法的局限性很大,结果往往只能反映个体差异,无法得出普适性的结论。而如今,有了健康医疗大数据的支持,研究者可以通过对海量的医疗数据进行分析,得到更加全面和准确的结论。这样的改变不仅提高了研究的科学性和可靠性,还加快了科学研究的进程。
其次,健康医疗大数据为疾病预防和控制提供了重要的参考依据。疾病发生的原因多种多样,临床医生在面对病人时往往只能依靠自己的经验和知识进行判断。但是,这种经验判断往往受到主观因素的干扰,容易出现偏差。而有了健康医疗大数据的支持,通过对大量疾病的发病原因、流行规律和危险因素的分析,医生可以更加准确地评估一个人患病的风险,采取相应的预防措施。这不仅可以降低疾病的发生率,还可以在疾病暴发时及时作出反应,遏制疾病的传播。
另外,健康医疗大数据在个性化医疗方面也有着广泛的应用。传统的医疗模式是“一刀切”,即相同疾病的患者被一视同仁地对待。然而,同一种疾病在不同人群中可能存在差异,药物对不同患者的疗效也有所不同。有了健康医疗大数据的支持,医生可以更好地掌握患者的健康状况、基因信息、生活习惯等个体差异,从而能够制定更加个性化的治疗方案。这样不仅可以提高患者的治疗效果,还可以减少不必要的治疗和药物的浪费,节省医疗资源。
最后,健康医疗大数据可以促进医疗服务的智能化和高效化。传统的医疗服务往往需要患者亲自到医院进行就诊,医生需要面对面地进行诊断和治疗。这样的模式存在许多弊端,如患者排队就诊时间长、医生资源分配不均等。而有了健康医疗大数据的支持,患者可以通过网络平台向医生咨询病情,医生可以通过远程监测患者的生理指标,进行远程诊断和指导治疗。这样不仅可以节省时间和成本,还可以提高医疗服务的效率和质量。
综上所述,健康医疗大数据对于提升医疗质量和改善医疗服务具有重要的意义。作为一名医务工作者,我亲身经历了健康医疗大数据给医疗行业带来的巨大变革。我相信未来,随着科技的不断进步,健康医疗大数据将会更加发挥作用,为人类健康事业做出更大的贡献。
医疗大数据的论文(优秀13篇)篇十一
职责:
1、根据分析要求,制定数据采集标准和目标,对原始数据进行业务逻辑处理。
2、分析企业客户数据,构建客户画像,构建企业和个人信用评分模型,支持运营相关业务数据分析和调取。
3、通过对公司运营数据研究,提出改善运营质量的方法和建议,搭建数据分析体系,为企业各级决策者提供支持。
4、熟悉数据挖掘建模过程及主流算法,具有大数据系统架构能力,熟悉spark等分布式机器学习框架,熟悉hadoop/hbase/hive等大数据处理平台相关数据挖掘、数据建模经验优先。
任职要求:
1、本科及以上学历,金融、数学、计算机等理工科相关专业。
2、1-3年金融领域数据分析,建模经验,熟悉逻辑回归,决策树等建模方法。
3、有较强的学习能力,能够快节奏地学习,研究,产出并能独立开展工作。
4、对于数据有敏锐的直觉,能够自主挖掘数据背后的市场方向、规律、为业务部门提供决策依据。
5、有软件开发,机器学习,数据库,hadoop/hive经验者优先。
医疗大数据的论文(优秀13篇)篇十二
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
2。2开发与内容的管理形式。
在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。
大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。
其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。
在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。
与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。
3结语。
综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。
医疗大数据的论文(优秀13篇)篇十三
在桥梁工程中,数据按时间上的划分可以分为两类,静态数据与动态数据。静态数据主要指桥梁的相关信息资料库与科学实验产生的数据。信息资料库是一种相对静态数据,因为这些数据资源每过一段时间将更新一次。各国家和各地方政府部门基本建立了桥梁工程资料库及相关系统,列举出主要国家和地方政府的桥梁管理系统,包括建成时间、系统功能、与建设部门等。除政府部门外,各科研单位也在完善各自的桥梁统计分析系统,系统中主要包括桥梁的桥型、跨径、材料、建成时间等基本信息,还包括桥梁的病害、桥梁状况评定等相关内容。桥梁的科学试验数据主要来源于各大高校和科研单位科学研究中的模型试验、振动台试验、风动实验、桥梁的荷载试验等产生的数据。这类数据的有效分析处理形成各类科学研究成果,但是此类数据的开放程度低,造成数据资源的极大浪费。桥梁的动态数据主要来自于桥梁的施工监控和成桥运营阶段健康监测系统,此类数据由安装在桥梁上的实时监测传感器获得,包括位移传感器、速度传感器、加速度传感器、应变计、温度计、风速仪、gps等。统计了国内部分桥梁健康监测系统的传感器数量以及安装时间。各类传感器配以相关的采集系统来获得数据信息,再通过相关软件分析、处理,从而掌握桥梁的实时健康状况,对桥梁的状态进行评估与预测。整个桥梁健康监测体系。
2开发桥梁工程领域大数据资源意义。
利用桥梁的静态数据库,可以了解桥梁的基本信息,为全国的桥梁统计、普查与管理提供信息资源。科研数据的开放有助于学术界的交流、创新,取得更为丰富的科研成果。桥梁动态数据包括施工监控数据与成桥运营阶段的监测数据,充分利用与挖掘大数据资源,可以提高桥梁的施工质量、加快施工进度,提前预测和解决施工过程中可能出现的问题,减少质量事故和经济损失。成桥运营阶段的监测数据主要为桥梁的健康状况评估提供依据,掌握桥梁所处的状态,分析、处理数据资源,提高预测、分析、解决问题的'能力。可为同类桥梁的施工管理与养护等,提供宝贵经验。同时大数据资源的开放、共享,有助于节约国家资金和社会资源。
3存在问题及解决方法。
(1)最先遇到的也是最棘手的问题是数据的去冗、去噪,从海量数据中挖掘大数据资源价值。目前,所列一座特大桥上各类传感器每天采集的数据达到几个gb到几十gb,甚至上百gb,如此海量的数据如何去处理,有效剔除无用的信息,找寻剩余有用的信息,从而产生新的价值、新的资源。这也是在大数据时代有效利用大数据资源要解决的首要问题。解决这一问题的主要途径是编译相关的去冗、去噪的智能分析软件,同时可以利用云计算、云分析、云管理等方法来提高解决这一问题的效率,使大数据变为有用数据,做到真正智能化分析。
(2)现在各政府部门和科研单位,都在做自己的桥梁信息库以及监测研发数据库等,而且大多数数据库都是相类似、重复的。这样造成资源的极大浪费,包括劳动力、资金等。解决这一问题的有效途径是加强政府部门、科研单位内部以及之间的相互合作,开放和共享数据资源,这也是大数据时代的必然趋势。各部门和科研单位可以有步骤、分阶段地开放共享各自所拥有的数据资源,不论是采用付费或免费的方式。
(3)由于大数据具有“4v”等特点,在大数据研究的初期阶段,大数据的价值还未充分体现时,要储存、分析、利用大数据资源,需有软件、硬件等基础设施的投入,国家和科研单位应提供专项资金的支持,同时国家可制定相关鼓励支持政策。
(4)在大数据时代成熟以后,应建立相关法规,规范和保护数据的开发利用,制订相关统一标准,提高数据的使用效率。
4结语。
本文首次在桥梁工程领域引入大数据概念,提倡用大数据的观察事物的方法和思维方式来分析、处理、挖掘早已在桥梁工程中应用的大数据资源。文章首先介绍大数据的概念及特点,和在桥梁工程领域产生的静态与动态数据的来源。其次、说明充分开发桥梁工程领域大数据资源的重要意义。最后,就目前在桥梁工程应用中存在的问题提出相关解决途径。