通过统计分析可以得到客观、可靠的结论,从而为问题的解决提供依据。接下来小编将分享一些实际问题中的统计分析案例,希望能够加深大家对于统计学的理解。
概率论与数理统计论文(专业18篇)篇一
《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。
学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出”。概率论习题的难做是有名的。要做出题目,至少要弄清概念,有些还要掌握一定的技巧。这句话说起来简单,但是真正的做起来就需要花费大量的力气。不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。比方说,在我们教材的第一章,有这样一个公式:a-b=bar(ab)=a-ab,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂。其实这个公式正确的应该是a-b=abarb=a-ab.这是一个应用非常多的公式,而且考试的时候一般都会考的`公式。在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。做到知其一,也知其二。
现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。现在就这部分内容给大家分析一下。说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分。分析到这里,就要指出一些人在学习这门课的“战术失误”。有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。万不能让基础知识成为概率统计的拦路虎。学习中要知道哪是重点,哪是难点。
如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切――“见多识广”。对于我们自考生而言,学习时间短,想利用“孰能生巧”不太现实,但是“见多识广”确实在短时间内可以做到。这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。同一个知识点,可以从多个角度进行考察。有些学员由于选择辅导书的问题,同类型的题目做了很多,但是题目类型却没有接触多少。在考试的时候感觉一落千丈。那么应该如何掌握题目类型呢?我想历年的真题是我们最好的选择。
平时该如何练习?提出这个问题可能很多人会感到不可思议。有一句话说得好“习惯形成性格”。这句话应用到我们的学习上也成立。这么多年以来,有些人有很好的学习习惯,尽管他的学习基础也不好,学习时间也有限,但是他们能按照自己知道的学习规律坚持学习,能够按照老师说得去思考、前进。我们大多数人都有惰性,一个题目一眼看完不会,就赶紧找答案。看了答案之后,也就那么回事,感觉明白了,就放下了。就这样“掰了很多玉米,最后却只剩下一个玉米”。我们很清楚,最好的方法是摘一个,留一个。哪怕一路你只摘了2个,也比匆匆忙忙摘了一路,却不知道保留的人得到的多。平时做题要先多思考,多总结,做一个会一个,而且对于做过的题目要经常地回顾,这样才能掌握住知识。就我的辅导经验而言,绝大多数人还是在这个问题上出现了问题。
考试有技巧,学习无捷径。平时的学习要注重知识点的掌握,踏踏实实,这才是方法中的方法。“梅花香自苦寒来”,“书山有路勤为径”。
概率论与数理统计论文(专业18篇)篇二
摘要:
在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。
关键词:
概率论,概率论的发展与应用正文。
说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
二、概率论的发展。
概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是18出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。
概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。19,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。
三、概率论在生活中的应用。
(1)概率论在保险中的应用。
保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的概率是相对定的,那么保险公司就需要确定合理的赔率来保证公司的盈利,这就涉及到了概率的应用。
(2)概率论在投资中的应用。
俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。
(3)概率论在交通设施中的应用。
随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。
(4)概率论在密码学中的应用。
随着电脑的`普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。
(5)概率论在市场营销中的应用。
生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。
概率论与数理统计论文(专业18篇)篇三
在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。
概率论,概率论的发展与应用正文。
说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理,这是一部继往开来的作品。这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。
概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。
(1)概率论在保险中的应用。
保险是一项使投保人和保险公司能够同时取得利益的活动,投保人缴纳一定数额的保险金,如果遇到投保范围内的问题时,保险公司将支付投保人数倍甚至更多的金额,能够在一定程度上帮助投保人解决问题。若是投保人没有出现问题时,其缴纳的保险金是不予以退还的。一般情况下,投保人遇到问题的'概率是相对定的,那么保险公司就需要确定合理的倍率来保证公司的盈利,这就涉及到了概率的应用。
(2)概率论在投资中的应用。
俗话说,不要把鸡蛋放在一个篮子里面。同样,这个原理也可以运用于投资中,在购买股票的时候,购买多支股票的要优于购买一支股票,这里可以用概率的方法进行解析。
(3)概率论在交通设施中的应用。
随着城市人口的增加,城市车辆数目的增多,也就出现越来越严重的交通问题。怎么样合理安排路线,成为了交通设施建设中的一个重要环节。而某一时间,某一路线,某一位置会面临怎样的交通状况,是可以运用概率的方法计算出来,正确的处理各种可预测的交通问题,就能为人民的生活出行营造一个舒适的环境。
(4)概率论在密码学中的应用。
随着电脑的普及,电子文件所占的比重越来越大,在广泛使用的同时,怎样保证其安全性和可靠性呢?这就出现了常见的加密文件。加密文件中密码的存在极大的加强了文件的安全性,采用加密措施的文件,其被破译出来的可能性很小。这一点可以通过概率计算的方法加以验证。
(5)概率论在市场营销中的应用。
生产商,销售商,经济活动中的各个角色在从事一定的经济活动中都需要考虑这一活动所带来的结果,通俗的来说,就是要考虑其所得的利益。那么,销售商在进货的过程中就需要考虑到市场的需求量,产品的价值等综合问题,以获取最大的利益。随着社会的不断发展,概率论与数理统计的知识越来越重要。目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
总之,在科学技术日新月异的今天,概率论将在各个行业发挥不可替代的作用。
概率论与数理统计论文(专业18篇)篇四
统计与概率主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的决策。为了更好地了解世界,我们必须学会处理各种信息。所以在教学中我认为统计教学组织和概率教学组织的主要策略应有以下几点:
1、关注学生对现实生活的经历。
再如,在统计量中,描述数据集中趋势的特征的一个重要的概念就是“平均数”,如何来组织这个内容帮助儿童理解它的含义就显得很重要了。如向学生呈现这样一道题:小明身高是1.4米,他根本不会游泳。那么他到一个平均水深是1.2米的游泳池中,会不会有生命危险?“小强所在的班里平均身高是1.5米,而小明所在班级的平均身高是1.4米。能不能判断小强和小明谁更高些?”呈现这样的实际问题,让学生通过多次辨析来真正理解平均数的意义。
2、增强学生再数学生活中的体验。
在教学过程中,我们不能把一些统计知识简单的当作一些表示概念的词汇记忆,或当作一种程序性的技能来反复操作,而应尽可能的组织活动增加学生在学习过程中的体验。如:对低年级的学生来说,可以通过列表的方式来体验统计的意义。又如:统计图表的制作不只是一个简单的技术问题,而是在制作过程中体验和理解统计图表意义的问题。不是一个简单的数据堆砌过程,而是一个对数据理解的过程,例如让学生调查:调查一下自己5岁到10岁之中,每年体重变化情况。这样一个问题,对学生来说就不是一个简单的数据获得的问题,更重要的是如何处理这些数据的问题。一个简单的方法,就是将这些数据列成一张统计表。然而,这些数据被这样罗列后,只是反映了事实,似乎还是不能反映出某种规律性的趋势来。于是,学生可能就会去进一步尝试,他们可能会尝试将这些数据用条形统计图的方式呈现出来。
这样的图虽然直观的反映了在不同年段的体重的不同,但还是不能反映某种变化的规律性的趋势。怎么办?学生肯就会再去进一步尝试,将这些数据用其他方法,就这样,在一定的时间段内,自己体重的变化就会用更直接的方法呈现出来,那就是折线统计图。
所以,我们在讲统计一课时,应注重学生的日常经验,从学生的生活出发,让学生在经历一个具体情景中活动中去体验,去认识。去构建。
1、亲历随机环境,消除学生错误认知。
概率的一些观念,往往只能靠多次的亲身体验才能形成。由于学生过去接触的主要是确定性事物,对于不确定性事物的认识非常有限,因此学生都存在着一些概率方面的错误认知。消除学生的错误认知,建立正确的概率知觉是概率教学的一个重要目标。要实现这一目标,必须让学生亲自经历对随机现象的探索过程。在概率教学的初始阶段,教师应通过真实数据、活动和直观模拟,创造情景以鼓励学生检查、修改或更正他们对概率的信念和常见错误的认识。首先,可以引导学生猜测结果发生的概率,然后让学生亲自动手进行实验,收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,必要时可以建立概率模型,并与实验结果联系起来。学生在此过程中尽管将自己的最初猜测、实验结果和概率理论进行比较,这将有利于促进他们修正自己的。错误经验,建立正确的概率直觉。其次,对于学生的一些回答,教师不能仅仅简单地判断其对错,而应该深究学生回答的理由,因为即使是正确的答案,其背后也可能是错误的理由。为了消除学生的错误认知,教师应该要求学生说出理由,并有针对性地适时帮助学生,使其建立正确的概率认识。
2、合理选择素材,丰富学生生活经验。
运用概率的对象大多来源于生活,其教学自然也不能脱离生活实际,教学中教师可以对教材进行二次开发,选择较为贴近生活实际的素材,为学生提供问题的实际背景,这样不但有助于学生对相关知识的理解,还能让学生感受数学在生活中的应用价值,丰富他们的生活经验。例如,生活中有些商家经常举行“摇奖”活动,如只要购物满百元,就可以通过转动转盘来进行兑奖,即只要转动转盘,指针指在哪个区域内,就是几等奖。通过对这类问题的讨论和研究,学生可以了解到一等奖的可能性最小,不但加深了对可能性的认识,也了解了商家搞活动的用意,也为形成随机意识提供了素材和可能性。
3、灵活操作实验,提高活动思维含量。
在概率教学中,常常需要做实验,让学生在活动中体验很重要,而活动前、活动中、活动后的思考更重要。没有思考,学生对概率知识的理解只是一种机械的模仿或照搬,涉及的也只是知识的表层,甚至有些学生一无所获。只有经过学生主动地从个体出发对新知进行深层次的思考,才能达到掌握知识本质的目的,并运用到实践中去。教师不应该把“做实验”变为“讲实验”,而应该逐步引导学生去体验、去思考,这样才能丰富学生对随机事件的体验,更深刻地领会概率的思想方法,并在不断的思考、探索中得到思想的升华,进一步把握住概率的本质。
概率论与数理统计论文(专业18篇)篇五
课堂教学的趣味化,即结合学生感兴趣的实际问题引入概率知识,激发学生的求知兴趣,启发学生的数学思维。内容枯燥,教学方式单一是学生感觉课堂乏味的主要原因。在教学过程中,教师应多结合学生感兴趣的问题,让学生自己解决,这有助于提高学生的学习兴趣。比如,在给出数学期望的定义时,可以介绍学生的平均成绩问题:五名学生的成绩分别为85,80,90,85,90,求这五名学生的平均成绩。五名学生成绩的概率分布如表1所示。通过观察表1,学生很容易知道平均成绩为1/5×(85+80+90+85+90)=80×1/5+85×2/5+90×2/5,这即是离散型随机变量数学期望的形式。另外教师应精简例题的数量,利用有层次的例题展现知识点。二维连续型随机变量函数的加法分布是概率学习中的重点也是难点,在讲授时,教师可以首先通过两种方法(定义法和卷积公式法)计算x+y型函数的分布使学生感受两种方法的不同之处,然后介绍2x+y型分布,使学生了解卷积公式不是万能的。
课堂教学的生活化,即通过生活中具体的实例讨论概率的应用,建立形象问题和抽象思维之间的联系。概率论与数理统计是一门实用性很强的科学,在具体实际情况和数学概念、定理、公式之间建立正确的联系,成为现在学生面临的主要难题。教师在教学过程中可以分析一些具体的实例,使学生了解怎样应用数学知识解决实际问题。比如分析问题“根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若被诊断者患有癌症,则试验反应为阳性的试验反应为阳性的概率为0.95,若被诊断者没有患有癌症,则试验反应为阴性的概率为0.95,且被试验的人患有癌症的概率为0.005,问如果被试验者反应为阳性,他患有癌症的概率为多大?”这是一个题目很长的实际问题,学生一般无从下手,解决问题的关键在于了解题目中涉及几个条件和几个随机事件,只要准确描述随机事件就可以把实际问题转化为概率问题。实际问题的多次训练有助于培养学生用数学语言描述实际问题的能力。
教学的`启发性即给学生思考的时间,等学生无法想明白的时候再去开导。具体来说就是老师对上课提出的问题给出学生思考的时间,在学生主动思考之后,帮助学生开启思路。“填鸭式”,“满堂灌”的教学方法最容易使学生失去学习兴趣。孔子曰“不愤不启,不悱不发”,说的就是要启发学生思维,引导学生思路。比如,讲授全概率公式之前引入实例:有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%,又知这三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件是次品的概率是多少?撇开概率知识不谈,把这个问题纯粹看成一个数学问题,也可以用中学知识解决,给学生几分钟思考的时间并适当引导学生使用数形结合的方法讨论,我们把产品在三个工厂的生产及次品情况转化为产品分布图,学生就很容易地知道从这批产品中任取一件次品的概率就是黑色椭圆区域在整个矩形内所占的比例,经过分析就可以得到全概率公式。该方法不仅能够加深学生对该问题的印象,还有助于学生对复杂全概率公式的理解。
教学的研究性,就是要培养学生解决新问题的能力。在大学教育中仅仅教给学生课本上的知识是远远不够的,尤其是在现代科技迅速发展的情况下,应该花大力气培养学生解决未知问题的思维能力。比如,在讲授正态分布的概率密度函数的图形特点时,可以让学生自己试着研究密度函数图形的特点。
首先引导学生根据高等数学的知识来研究函数图形的以下特性:
(1)奇偶性(对称性);
(2)单调性;
(3)有界性;
(4)凹凸性及拐点。
接下来根据正态分布概率密度函数的具体形式分析密度函数图形的特性。在概率论与数理统计的教学中,教学方法影响了学生对这门课程的掌握程度,成功的数学教育不仅要为学生提供数学知识,还要对学生进行数学的思维训练。采用灵活多变的教学方法和形式,致力培养学生的综合素质能力是我们永恒的目标。
概率论与数理统计论文(专业18篇)篇六
概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。
二、本课程的目的和任务。
本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。
三、本课程与其它课程的关系。
学生在进入本课程学习之前,应学过下列课程:
高等数学、线性代数。
这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。
四、本课程的基本要求。
概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下:
(一)随机事件和概率。
1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。
2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。
3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。
4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。
5、掌握伯努利概型及其计算。
(二)随机变量及其概率分布。
1、理解随机变量的概念。
2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。
3、掌握(0-1)分布、二项分布、泊松分布、正态分布、均匀分布和指数分布。
4、会求简单随机变量函数的概率分布。
(三)二维随机变量的联合分布。
1、了解二维随机变量的概念。
2、了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,了解二维连续型随机变量的联合概率密度及其性质,并会用它计算有关事件的概率。
3、了解二维随机变量的边缘分布和条件分布。
4、理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。
5、会求两个独立随机变量的简单函数的分布。
(四)随机变量的数字特征。
1、理解数字期望和方差的概念,掌握它们的性质与计算。
2、掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。
3、会计算随机变量函数的数学期望。
4、了解矩、协方差和相关系数的概念与性质,并会计算。
(五)大数定律和中心极限定理。
1、了解切比雪夫不等式。
2、了解切比雪夫大数定律和伯努利大数定律。
3、了解林德伯格一列维定理(独立同分布的中心极限定理)和棣莫佛-拉普拉斯定理(二项分布以正态分布为极限分布)。
(六)数理统计的基本概念。
1、理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。
2、了解分布、t分布和f分布的定义及性质,了解分布分位数的概念并会查表计算。
3、了解正态总体的某些常用统计量的分布。
(七)参数估计。
1、理解点估计的概念。
2、掌握矩估计法和极大似然估计法。
3、了解估计量的评选标准(无偏性、有效性、一致性)。
4、理解区间估计的概念。
5、会求单个正态总体的均值和方差的置信区间。
6、会求两个正态总体的均值差和方差比的置信区间。
(八)假设检验。
1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2、了解单个及两个正态总体的均值和方差的假设检验。
3、了解总体分布假设的x2检验法.
五、课程内容。
理论教学内容。
第一章随机事件及其概率。
1-1随机事件、样本空间。
1-2频率与概率。
1-3古典概型。
1-4条件概率。
1-5事件独立性。
第二章随机变量及其分布。
2-1随机变量。
2-2离散型随机变量及其概率分布。
2-3连续型随机变量及分布函数。
2-4常用连续型分布。
2-5随机变量函数的分布。
第三章多维随机变量及其分布。
3-1二维随机变量。
3-2边缘分布。
3-3条件分布。
3-4相互独立的随机变量。
3-5两个随机变量函数的分布。
第四章随机变量的数字特征。
4-1数学期望。
4-3协方差、相关系数。
4-4矩、协方差矩阵。
第五章大数定律与中心极限定理。
5-1大数定律。
5-2中心极限定理。
第六章数理统计的基本概念。
6-1总体与样本。
6-2统计量与抽样分布。
第七章参数估计。
7-1点估计。
7-2点估计的性质。
7-3区间估计。
7-4正态总体参数的区间估计。
7-5单侧置信区间。
第八章假设检验。
8-1假设检验的基本概念。
8-2单个正态总体的参数检验。
8-3两个正态总体的参数检验。
8-4分布拟合检验。
实践教学内容(习题课)。
第一章、第二章、第三章配合课堂教学内容,每章安排一次习题课,第四章和第五章,第六章和第七章,第八章安排三次习题课,共六次,每次2学时。
六、教材与参考书。
1、教材。
2、主要参考书。
七、本课程的教学方式。
本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上注意经常列举本课程在各领域成功应用的实例,增强同学的学习热情,讲授时应注意善于联系已学过课程的有关概念、理论和方法,使同学加快对本课程的基本概念、基本理论和基本方法的理解。
配合理论教学需要,在习题课中通过合适的例题和适当的讲解,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论建立数学模型、解决实际问题的能力。
概率论与数理统计论文(专业18篇)篇七
2013年考研结束了,相信很多考生松了一口气。今年的考研数学试题从整体上看,与去年差别不大,难度相比去年略有提升。专家现从概率论与数理统计这个科目出发,对今年的考试做一下几方面分析。
首先,出题的方向和题目的类型也都完全在预料之内,没有偏题怪题。只要考生有比较扎实的基础,复习全面,是很容易拿到高分的。细致地分析起来,今年的题目有这样几个特点:
一是依旧强调对概念的理解。如数学一和数学三的填空题,都是考查概念。数一的第七题,考查对概念的进一步理解。只要掌握好概念,客观题是很容易拿到分数的。
二是仍以计算为主。如在正确掌握概念的基础上,还是以计算为主。无论是数一数三的.解答题还是客观题,每道题都需要计算。所以计算还是我们考试的主体。
三是考查学生的分析能力。如数学一的第8题,就考查我们的分析能力。直接根据概念做是做不出来的,需要分析出他们的关系,从而解出最后结果。还有数三的第8题,需要先分析出x+y=2的所有可能情况,然后才能得出正确结果。
概率论与数理统计和高等代数不同,高等代数中计算技巧多一些,而概率论与数理统计概念和公式比较多,对计算技巧的要求低一些,但对考生分析问题的能力要求高一些,概率论与数理统计中的一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。
要达到考试的要求只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答。概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二项分布,要结合他的实际背景,伯努利试验中成功的次数的概率。这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。
只有掌握了最本质的概念,在此基础上做一定量的题去巩固所学知识。这样才能对概念的理解更加到位,从而做题更加轻松快捷准确。
概率论与数理统计论文(专业18篇)篇八
考试内容:随机变量、随机变量分布函数的概念及其性质、离散型随机变量的概率分布、连续型随机变量的概率密度、常见随机变量的分布、随机变量函数的分布考试要求。
1、理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(poisson)分布、及其应用。
3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。
5、会求随机变量函数的分布。
三、多维随机变量及其分布。
概率论与数理统计论文(专业18篇)篇九
概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。
二、本课程的目的和任务。
本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。
三、本课程与其它课程的关系。
学生在进入本课程学习之前,应学过下列课程:
高等数学、线性代数。
这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。
四、本课程的基本要求。
概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下:
(一)随机事件和概率。
1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。
2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。
3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。
4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。
5、掌握伯努利概型及其计算。
(二)随机变量及其概率分布。
1、理解随机变量的概念。
2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。
3、掌握(0-1)分布、二项分布、泊松分布、正态分布、均匀分布和指数分布。
4、会求简单随机变量函数的概率分布。
(三)二维随机变量的联合分布。
1、了解二维随机变量的概念。
2、了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,了解二维连续型随机变量的联合概率密度及其性质,并会用它计算有关事件的概率。
3、了解二维随机变量的边缘分布和条件分布。
4、理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。
5、会求两个独立随机变量的简单函数的分布。
(四)随机变量的数字特征。
1、理解数字期望和方差的'概念,掌握它们的性质与计算。
2、掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。
3、会计算随机变量函数的数学期望。
4、了解矩、协方差和相关系数的概念与性质,并会计算。
(五)大数定律和中心极限定理。
1、了解切比雪夫不等式。
2、了解切比雪夫大数定律和伯努利大数定律。
3、了解林德伯格一列维定理(独立同分布的中心极限定理)和棣莫佛-拉普拉斯定理(二项分布以正态分布为极限分布)。
1、理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。
2、了解分布、t分布和f分布的定义及性质,了解分布分位数的概念并会查表计算。
3、了解正态总体的某些常用统计量的分布。
(七)参数估计。
1、理解点估计的概念。
2、掌握矩估计法和极大似然估计法。
3、了解估计量的评选标准(无偏性、有效性、一致性)。
4、理解区间估计的概念。
5、会求单个正态总体的均值和方差的置信区间。
6、会求两个正态总体的均值差和方差比的置信区间。
(八)假设检验。
1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2、了解单个及两个正态总体的均值和方差的假设检验。
3、了解总体分布假设的x2检验法.
五、课程内容。
理论教学内容。
第一章随机事件及其概率。
1-1随机事件、样本空间。
1-2频率与概率。
1-3古典概型。
1-4条件概率。
1-5事件独立性。
第二章随机变量及其分布。
2-1随机变量。
2-2离散型随机变量及其概率分布。
2-3连续型随机变量及分布函数。
2-4常用连续型分布。
2-5随机变量函数的分布。
第三章多维随机变量及其分布。
3-1二维随机变量。
3-2边缘分布。
3-3条件分布。
3-4相互独立的随机变量。
3-5两个随机变量函数的分布。
第四章随机变量的数字特征。
4-1数学期望。
4-3协方差、相关系数。
4-4矩、协方差矩阵。
第五章大数定律与中心极限定理。
5-1大数定律。
5-2中心极限定理。
6-1总体与样本。
6-2统计量与抽样分布。
第七章参数估计。
7-1点估计。
7-2点估计的性质。
7-3区间估计。
7-4正态总体参数的区间估计。
7-5单侧置信区间。
第八章假设检验。
8-1假设检验的基本概念。
8-2单个正态总体的参数检验。
8-3两个正态总体的参数检验。
8-4分布拟合检验。
实践教学内容(习题课)。
第一章、第二章、第三章配合课堂教学内容,每章安排一次习题课,第四章和第五章,第六章和第七章,第八章安排三次习题课,共六次,每次2学时。
六、教材与参考书。
1、教材。
2、主要参考书。
七、本课程的教学方式。
本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上注意经常列举本课程在各领域成功应用的实例,增强同学的学习热情,讲授时应注意善于联系已学过课程的有关概念、理论和方法,使同学加快对本课程的基本概念、基本理论和基本方法的理解。
配合理论教学需要,在习题课中通过合适的例题和适当的讲解,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论建立数学模型、解决实际问题的能力。
文档为doc格式。
概率论与数理统计论文(专业18篇)篇十
婚姻状况:未婚民族:汉族。
培训认证:未参加身高:168cm。
诚信徽章:未申请体重:
人才测评:未测评。
我的特长:
求职意向。
人才类型:在校学生。
应聘职位:家教:,兼职教师:
工作年限:1职称:
求职类型:兼职可到职日期:随时
月薪要求:1000以下希望工作地区:广州,广州,。
工作经历。
公司性质:所属行业:
担任职位:
工作描述:
离职原因:
志愿者经历。
教育背景。
毕业院校:广州大学。
概率论与数理统计论文(专业18篇)篇十一
答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。
先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公平的。
拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用a1表示第一次取到次品,a2表示第二次取到次品,a3是第三次取到次品。
如果a表示第一次不取到次品,b表示第二次不取到次品,c表示第三次不取到次品,求abc绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品p(c|ab),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是p(a+b+c)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。
答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的`是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。
何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。
关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。
然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。
最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解u检验统计量、t检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。
答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。我举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。
4.概率的公式非常难背,有什么好方法吗?
答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛n次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。
概率论与数理统计论文(专业18篇)篇十二
考试内容。
考试要求。
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式.
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布。
考试内容。
考试要求。
5.会求随机变量函数的分布.
三、多维随机变量及其分布。
考试内容。
考试要求。
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
四、随机变量的数字特征。
考试内容。
考试要求。
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
五、大数定律和中心极限定理。
考试内容。
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).
六、数理统计的基本概念。
考试内容。
七、参数估计。
考试内容。
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.
八、假设检验。
考试内容。
显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求。
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.
概率论与数理统计论文(专业18篇)篇十三
概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研宄的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研宄概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。
1.数学分析对概率论的渗透与推动。
1933年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。
1.1集合论与概率论的公理化体系。
由于数学的研究对象一般都是具有某种性质或结构。世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系;又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系;因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的.推动。
数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系2,统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备了独立性、无矛盾性、完备性的公理化特征,确定了事件与集合、概率与测度的关系,使集合论加盟概率论。概率论在坚实的公理化基础上,已成为一门严格的演绎科学,取得了与其他数学分支同等的地位,并通过集合论与其他数学分支密切地联系着。
1.2傅立叶变换与特征函数傅立叶级数是数学分析中十分有效的工具。事实上,不仅是傅立叶级数,还有傅立叶积分、傅立叶变换等等也都是数学分析中的重要工具。它们除了在数学分析领域内发挥着重要的作用之外,也已滲透到了概率论领域当中。其中,把傅立叶变换应用于分布函数或密度函数,就产生了所谓的“特征函数”于是,对于处理独立随机变量和与随机变量序列的问题,就显得十分方便了。
在数学分析中有如下定理:
正是由于概率论运用了傅立叶变换的这些相关知识,构造和引进了特征函数,使多维随机变量分布、极限分布研宄更便捷,从而把概率论的理论研宄推进一个崭新的阶段。
1.3雅可比行列式与随机变量函数的分布在数学分析当中,我们所接触的函数大多是显函数,但除了显函数外,也常会遇到另一种形式的函数一隐函数,尤其是隐函数组。为了确定所给方程组的隐函数组是否存在,德国数学家雅可比在偏微分方程的研宄中,引进了“雅可比行列式”对此问题给予了解决。同样,在概率论中,应用雅可比行列式j,可以一下子解决多维随机变量(x,)的函数zu,)的概率分布问题。
1.4同阶数量级与极限定理大数定律与中心极限定理是概率论研宄的中心问题,
也是数理统计中的理论基础。由于两者讨论的都是随机变量序列的极限问题,这与数学分析中的数列极限、函数列极限极为相似且联系十分密切,因此,对于数学分析中的同阶数量级方法在解决概率论的大数定律与中心极限定理的有关问题中同样是适用的。
1.5函数与随机变量、分布函数。
函数是数学分析中最基本的概念之一,当它被引入概率论领域以后,概率论中的许多问题便得到了简化,从而使概率论进入了一个崭新的阶段。
随机变量与分布函数是概率论中最为重要的两个概念,并且都是函数,其中,随机变量x为集函数,分布函数为实函数。在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间转化为数集,概率相应地由集函数约化为实函数。以函数的观点衡量分布函数,分布函数的性质是十分良好的:单调有界、可积、几乎处处连续、几乎处处可导。此外,随机变量x的数字特征、概率密度与分布函数的关系、连续型随机变量x的概率计算等等,同样运用了微积分的现成成果。
随机变量与分布函数的导入,从理论上结束了概率的古典时代。概率论的公理化、体系化的动力源,不仅是集合论和测度论,更重要、更基本的,仍然是数学分析那一套理论。概率论形成体系后的快速发展,不妨视作概率论向着微积分的靠拢与回归。
尽管随机变量x的导入方式有一定的自由度,不具备唯一性;尽管随机变量x的取值需服从一定的概率分布;尽管分布函数可以视为集函数,可以描述任何种类的随机变量x的随机性质,但是在函数的范畴内,它们的本质是一致的,既然都是函数家族的成员,就具备了确定性和因果律。
综上可见,数学分析的思想方法,已经滲透到了概率论的各个方面。没有微积分的推动,就没有概率论的公理化与系统化,概率论就难以形成一门独立的学科。
2概率方法在数学分析中的应用。
从上可知,在数学分析的渗透与推动作用下,概率论得到了飞快地发展。与此同时,由于概率论本身所具有的特征,使得数学分析中某些比较困难的问题得以高效简捷性地解决。
2.1数学期望与不等式不等式是数学分析中的重要内容,在数学分析中不等式问题经常碰到,例如级数不等式、积分不等式等等。数学分析中可以使用多种方法进行证明这些不等式,可是证明起来却相当不容易。然而倘若巧妙地运用概率论中数学期望性质,数学分析中的不等式问题便可以很轻易地得到证明。
概率论中数学期望的性质:
2.2中心极限定理在数学分析中的特殊作用。
概率论的中心极限定理为棣莫弗-拉普拉斯中心极限定理,林德贝格-勒维中心极限定理,林德贝格中心极限定理、李雅普诺夫中心极限定理[3]。这4个中心极限定理的建立不仅为概率论的发展开辟了广阔的前景,同时使概率论与数学分析保持着密切地联系。
极限是数学分析的基础,微积分中一系列重要的概念和方法,都与极限关系密切,数学分析中有一些复杂的极限问题,用通常的数学分析方法是难以计算的,但应用概率论中的中心极限定理则可较简便地得以解决。
由此可见,概率论不仅能解决随机的数学问题,同样也可以解决一些确定的数学问题,是一门同时包含着确定性和非确定性二重品格的特殊的数学学科。
将本文的word文档下载到电脑,方便收藏和打印。
概率论与数理统计论文(专业18篇)篇十四
随机变量及其分布函数的概念和性质,分布律和概率密度,随机变量的函数的分布,一些常见的分布:0-1分布、二项分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用。而重点要求会计算与随机变量相联系的事件的概率,用泊松分布近似表示二项分布,以及随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
1.求一维随机变量的分布律、分布密度或分布函数;。
2.一个函数为某一随机变量的分布函数或分布密度的判定;。
3.根据概率反求或判定分布中的参数;。
4.求一维随机变量在某一区间的概率;。
5.求一维随机变量函数的分布。
概率论与数理统计论文(专业18篇)篇十五
小编根据以往的考试经验对于概率论与数理统计在做题方面主要容易出错的地方总结出以下几个方便。
(1)概念理解不清晰。
在做题的时候常常会分不清关系和事件之间的结构;
(2)题目理解的不透彻。
在做题时候对于题目意思的理解不够准确,往往会出现对于概率模型的搞错;
(3)不能熟练的应用公式去分析和计算。
很多考生在答题的时候,不能熟练的运用公式去证明分析和计算题目,出现此类问题往往是考生对于公式的定义和概念性质理解的还是不完全明白,当考生对于公式和定义理解越来越清楚时这些问题也就能够更好的去答题了。
概率论与数理统计论文(专业18篇)篇十六
2013考研已剩不到40天了,很多同学在做真题和预测题《考研数学绝对考场最后八套题》时发现对概率论与数理统计这部分知识掌握得还不够好,对此专家给出几点建议,助同学们实现完美冲刺。
首先基本概念、基本理论和基本方法是考研数学的重点,概率论与数理统计也不例外,建议同学们随身带本《考研数学必备手册》,方便记忆掌握概念和理论,同时由于概率论与数理统计学科的.特点,同学们尽量能结合实际例子和模型来掌握。
其次概率论中的一维与二维随机变量的分布与数字特征是考研考查的重点内容,但这部分内容比较多,如有联合分布、边缘分布和条件分布,随机变量有离散型随机变量、连续型随机变量,还有介于两者之间的随机变量,有期望、方差还有协方差等。建议同学们在复习这部分时抓住分布函数这一主干,其余的可以说是它的分支。数理统计这部分难度不大,同学们先掌握好其基本概念和性质,然后如矩估计、最大似然估计、验证估计量的无偏性等考查重点,同学们多做些这方面的习题,掌握好其计算方法。
最后概率论与数理统计这部分内容考查单一知识点比较少,大多数试题是考查考生的理解能力和综合应用能力,但是很多同学答卷时,常把概率论与数理统计考题放在最后做,因时间紧迫、考虑不周及心慌等造成考试失误,所以同学们在答卷时要合理安排自己的时间。(来源:考研教育网)。
()
概率论与数理统计论文(专业18篇)篇十七
考试内容:
多维随机变量及其分布、二维离散型随机变量的概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度、边缘概率密度和条件密度、随机变量的独立性和不相关性、常用二维随机变量的分布、两个及两个以上随机变量简单函数的分布考试要求。
1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。
2、理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。
3、掌握二维均匀分布,了解二维正态分布、的概率密度,理解其中参数的概率意义。
4、会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。
概率论与数理统计论文(专业18篇)篇十八
3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;。
4.两个或多个随机变量的独立性或相关性的判定或证明;。
5.与二维随机变量独立性相关的命题;。
6.求两个随机变量的相关系数;。
7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。
第4章随机变量的数字特征。