范文范本可以促使我们思考写作的目的、受众和影响等因素,从而提高我们的写作水平。接下来是一些关于范文范本的案例,希望可以帮助大家更好地了解写作的要求和技巧。
大数据论文范文(14篇)篇一
本人这几年来在导入新课方面进行了创新:由传统的“教师导入”变为“学生导入”。也就是说,导入新课的任务改为由学生承担,由于其形式的新颖受到了学生的欢迎。每一节课在学习新内容之前,由一位学生(按座位号轮流,预先准备)上台向全班学生预告本课堂所要学习的内容,引入新课。具体要求是:(1)姿态大方,声音洪亮。(2)导入力求生动,有吸引力。(3)时间约为3分钟。经过一段时间的实践证明,“学生导入”这一形式的功效已经超出导入新课本身。它不仅激发出了学生的兴趣,锻炼了学生的口才,还增强了学生的信心,同时促进了教师能力的全面提高。例如,有一次,一名学生导入:“基因指导蛋白质的合成”时,呈现中学生熟悉的明星房祖名和成龙的照片,让学生仔细观察,并提问:他们长得像么?哪里像?为什么像?学生讨论,争论,看图,形成新的问题,得出结论:因为房祖名遗传了成龙的基因,基因控制生物的性状。进一步设疑:基因能直接体现生物性状么?学生答:不能,蛋白质体现生物性状。结论:由此可见,基因是通过指导蛋白质的合成来控制生物性状的。那么,基因是如何指导蛋白质合成的?导入新课。话音刚落,教室便爆发出了热烈的掌声,大家无不为他的上佳表现而喝彩。
二、创新教学模式。
在教学中,我把传统的传授教学模式变为现代的对话教学模式,这期间,老师首先必须变换传统的教学模式中所扮演的角色。由于教师的特殊身份、地位以及其专业知识的相对富有,往往在学生心目中就成为知识“权威”和课堂教学的“权威”,()而这一印象的形成恰恰成了师生进行对话的障碍。因此,在课堂教学中,改变教师的“权威”地位,已成了教师通过对话教学的首要条件。
在教学中,我不但勇于暴露学习的思维过程,大胆揭示教学中曾有过的错误认识,而且常与学生拥有相似的学习位置。例如,在“dna是主要的遗传物质”的教学中,对于噬菌体侵染细菌的实验结果,我过去认为可以证明蛋白质不是遗传物质。事实上,随着对教材和教参等资料的研究性学习,自己了解到这一结果。应该这个实验不能证明蛋白质不是遗传物质。暴露此类错误的知识,不但没有削弱自己在学生面前应有的地位,反而提高了学生的信任感。
创新教育观念。
我们学校由于生源较差,绝大多数学生上课不能认真听课。如果老师上课一味地讲课本知识,那么学生便或是睡觉或是玩手机等。我看到一些老师在讲台上上课上得全神贯注,可台下学生睡倒一大片。看到这种现象,我总在想,我们能不能一节课不要只讲课本上的`东西,我们可不可以讲一些学生感兴趣的事。面对我们这样的学生,应该把内容讲得简单一些,让学生每一节课都能学到一些知识。说句实在话,我在每个班上每节课讲的内容很少,中间会穿插一些学生感兴趣的事。这样,学生听起我的课来就不会想睡觉,也不会想玩其他的。更主要的是学生自我感觉到每一天都学到一些知识。他们也不会再无聊。何况,本来高考考查的大部分内容都不难。例如,我届带的高三十班。高二,我刚开始接班时,听各任课老师反映,绝大多数学生上课睡觉,玩手机,甚至有学生被老师“尊称”为“睡神”。当时的高二十班是普通班里最差的。面对这种情况,我对各位任课老师说,要改变教育观念,每一节课宁愿少讲一些内容,要确保每个学生每一节课都学到一些知识。结果,经过一年时间努力,在高三最后的高考中,我所带的高三十班大学录取率100%,在全校位列第一。
四、创新教育意义。
生物学科教育要着眼于现实社会,注重与现实生活的联系,激发学生到生活中寻找学习生物知识和兴趣,学以致用。引导学生善于发现当地与生物有关的事物和问题,寻找解决问题的方法,并在解决问题的过程中,获取新的知识,形成科学的态度和世界观。例如,讲到“顶端优势”的时候,我们可以举塔桥的柑橘园,果农们每年都要修剪枝条。让学生明白,修剪枝条是为了去除“顶端优势”,多长侧枝,从而多挂果实。
总之,在生物教学过程中,我们要深刻领会新课程的理念:提高生物科学素养,面向全体学生,倡导探究性学习,注重与现实过程的联系。努力做到:创新导入方式,创新教学模式,创新教育观念,创新教育意义。
(作者单位江西省贵溪市实验中学)。
大数据论文范文(14篇)篇二
大数据时代的来临,使企业进入战略绩效管理信息化时代加快了脚步,然而,企业cio在面对繁杂、庞大的数据信息时,如何做到价值最大化的被企业利用,为企业战略绩效管理系统服务,需要一套庞大、严谨的战略管理体系支撑,在以企业战略管理体系的框架支撑下,数据才能使管理系统如虎添翼,引领企业飞速发展。
研究esp系统发现,建立大数据时代下的战略绩效管理信息化系统,先要明确发展战略目标,在此基础上,为数据信息的价值实现构建管理体系框架,数据信息能否被有效利用取决于战略管理系统的体系设计。
大量的数据信息在全面、有序的企业战略管理框架中被归类、识别,并通过战略管理系统中的分析工具被分析、重置,再通过辅助保障系统将分析后的数据信息按流程、组织,系统的输送给终端。形成一整套企业战略管理信息化系统,以便于员工高效和正确的运用数据,真正实现数据可用性。
从管理信息化落地执行的角度看,esp的贡献在于能够帮助企业管理信息化高效的实现,全面落地、彻底执行并可视化监控和有效的评估,否则企业再好的战略、全面的管理体系落不了地、也不能产生很好的效果,更谈不上发展。
大数据论文范文(14篇)篇三
随着信息时代的到来,人们生活中的各个方面都开始涌现出海量的数据。这些大数据以惊人的速度增长,使得人们需要运用更加高效的方法来处理和分析这些数据,从而获得有价值的信息和洞察。在我与大数据打交道的过程中,我深深领悟到了大数据的重要性和它对我们生活的影响力。在这篇文章中,我将分享我对大数据的心得体会。
首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。
其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。
第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。
第四,大数据也带来了一系列的挑战和问题。首先,大数据的处理和分析需要高度的技术和运算能力。大数据往往以海量的形式存在,数据存储、处理和分析需要庞大的计算资源和算法模型。其次,大数据的安全和隐私问题也引起了人们的关注。随着大数据的应用,个人和机构的隐私面临着更大的风险,需要制定更加完善的数据保护和隐私政策。此外,大数据的分析和使用也需要遵守法律和伦理的规范,避免滥用和侵犯他人的权益。
综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。
大数据论文范文(14篇)篇四
如果把“数据化”作为人类社会走向信息时代的初级阶段,那么大数据技术的出现则可视为“数据颠覆传统”的中级阶段。在这一阶段,信息无所不在无所不包,随着技术的进步以及大数据的运用,改变了传统认识论模式,出现了从因果关系到相关关系的思维变革,大数据为我们的研究和管理工作带来了“三大变化”:第一,数据只求规模,不求样本;第二,数据求杂求量,不苛求精确度;第三,分析和处理数据只求相关性,不求原因。从教育行业来看,大数据技术将会为教育的发展带来新的挑战与机遇。高等学校在信息化的过程中会产生大量的数据,这当中包含了教师与学生的交流的信息、注册与选课信息、学籍与成绩信息以及各种校园卡信息等,这些大数据完整且客观性强,有非常高的应用价值,应用前景更加广阔。利用大数据技术,可以在很大程度上帮助学校对资源管理、教学模式、教学内容、教学方法进行创新,提升教育理念,进而满足社会对高等教育的个性化需求,为社会培养出更加优秀的人才。目前,高等学校的信息化系统建设正不断发展和完善,除了校园网络、各种数据管理系统、远程教学系统之外,还有数字化校园、图书馆信息管理系统等,如何对这些系统所产生的海量数据进行综合分析,为学校管理提供决策支持和帮助,建立高效的智慧化校园,已成为一个非常突出的问题。数据的价值是巨大的,虽然也会产生大量冗余信息,但是通过精准的分析,大数据将产生巨大作用。从高等教育的角度来看,教育管理、思维方式、学习行为、教学评估等,无不受到大数据的影响。
大数据论文范文(14篇)篇五
“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。
美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。
透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。
读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。
作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。
每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据时代》就这样在坚持中溶入我的思想。
大数据论文范文(14篇)篇六
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
2。2开发与内容的管理形式。
在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。
大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。
其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。
在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。
与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。
3结语。
综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。
大数据论文范文(14篇)篇七
摘要:大数据和智慧旅游都是当下的热点,没有大数据的智慧旅游无从谈“智慧”,数据挖掘是大数据应用于智慧旅游的核心,文章探究了在智慧旅游应用中,目前大数据挖掘存在的几个问题。
关键词:大数据;智慧旅游;数据挖掘;。
1引言。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智慧旅游应运而生。大数据作为当下的热点已经成了智慧旅游发展的有力支撑,没有大数据带给的有利信息,智慧旅游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智慧旅游”的概念,虽然至今国内外对于智慧旅游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智慧旅游中的作用出发,把智慧旅游描述为:透过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象带给服务[2]。这必须义充分肯定了在发展智慧旅游中,大数据挖掘所起的至关重要的作用,指出了在智慧旅游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智慧旅游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智慧旅游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智慧旅游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了超多数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
3.1信息化建设。
智慧旅游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。透过这些平台,已基本能掌握跟游客和景点相关的数据,能够实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及超多部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景十分广阔,但是应对超多的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,透过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法透过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
3.3数据安全。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人保密和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人保密更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智慧旅游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智慧旅游的构建还缺乏超多人才。
4解决思路。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘就应被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智慧旅游大数据人才。
参考文献。
将本文的word文档下载到电脑,方便收藏和打印。
大数据论文范文(14篇)篇八
美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。
虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。
布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。
hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。
索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。
trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。
并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。
传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。
[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).
大数据论文范文(14篇)篇九
4月6日,联合交通部科学研究院对外发布《第一季度中国主要城市骑行报告》。该报告以ofo出行大数据为参考,首次采用城市骑行指数作为评估指标,对北京、上海、广州、深圳、天津、南京、西安、杭州等20座国内一二线城市的共享单车发展水平进行评估排名。
可以发现,在单车使用水平、节能减排水平、健康贡献水平、停车设施水平、服务环境水平和社会文明水平六个方面,每个城市的表现各有不同。行业专家分析称,该报告对透视我国城市慢行交通发展现状、追踪共享单车行业发展、推动智能绿色城市建设事业起到参考作用。
18~45岁人群成共享单车主要用户西安广州最男人、天津昆明最均衡。
报告显示,18~45岁人群成共享单车骑行的主力用户,占比接近90%,其中30岁及以下群体占比达到55%,30~45岁占比约35%。由此可见,共享单车的用户不仅覆盖年轻群体,也受到了中年群体的广泛认可和使用。
同时,在用户男女比例分布中,不同的城市区分为了两大派系。一个是以西安、广州为代表的五座城市成为了“最男人”的共享单车骑行城市,男性用户占比达到55.90%~59.70%,较高于女性用户。而以天津、昆明为代表的五座城市则成了“最均衡”的共享单车骑行城市,男女比例在48%~52%之间,可以说基本相差无几。但综合来看,女性用户占比能达到45%左右。
中国城市整体骑行水平53.6分空间巨大综合指数六大榜单昆明东莞上榜。
报告显示,20第一季度中国城市整体骑行水平为53.6分,其中北京以84.3位居榜首,上海、成都分别以79.3分和65.1分紧随其后。除此之外,深圳、昆明、杭州、广州、南京、厦门、福州、武汉等八座城市也高于平均分,城市骑行水平较为领先。
而53.6的整体骑行水平虽然较满分100分来看属于偏低水平,但考虑到年初共享单车才迎来一波的快速发展,诸多方面尚不完善,例如城市停车设施的建设,北京、上海、杭州三城虽然达到13分以上,但其他20座城市停车设施平均得分仅为7.55分,远低于满分20分。未来,随着共享单车的健康发展、城市停车设施的建设、服务环境的提升等因素逐步完善,分数还将进一步上升。
报告同时给出“2017年第一季度主要城市六大榜单”,北京位列“停车设施相对完善”、“节能减排贡献最大”、“政府服务环境最好”三个榜单之首。昆明则成为“最爱骑共享单车的城市”,东莞成为“我骑行·我健康”的榜首城市。
城市文明程度杭州12.9分排第一20城q1累计骑行5.93亿公里。
报告针对社会文明程度,对各城市对共享单车的友好度进行了评分,杭州市以12.9分排名第一,南京、西安分别以12.75和12.22排名第二第三,北京仅以9.94分排名第九。在服务环境水平评估中,北京以满分15分位列第一。近期,全国各地陆续出台了针对共享单车的管理办法,如上海出台了《共享自行车服务规范》,成都推出了《成都市关于鼓励共享单车发展的试行意见》。
报告显示,我国20座城市第一季度累计骑行5.93亿公里,相当于绕地球14794圈,日均累计骑行距离为659万公里,相当于地球赤道的164倍。不仅如此,20个城市第一季度人均累计骑行消耗热量6840千卡路里,相当于燃烧掉1.8斤脂肪。
共享单车缓解城市交通出行难问题。
数据统计,从1995年至,随着民用汽车保有量从1040万辆攀升至1.9亿辆,自行车的.保有量却从6.7亿辆,急剧下降至3.3亿辆。汽车成为代步工具的同时,给城市交通和生态环境也带来了极大压力,城市居民的出行成本急剧上升。
专家认为,共享单车+公共交通的出行模式,正逐渐替代家用汽车+步行+公共交通的出行模式,快速发展中的共享单车正改善着我国城市居民的出行模式,也对我国交通新体系建设产生深远影响。
大数据论文范文(14篇)篇十
探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。
统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。
一探究式教学法在统计学原理课程中的实施环节。
1问题选取。
要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。
在实施探究式教学的初期阶段,应选取单一的并能够在较短时间内完成的问题。最好是能够当堂形成结论且给学生较深的印象。随着探究问题的不断深入,结合教学大纲,问题的.选取进一步深化,逐步设置有一定探究压力但系统性不强并限定探究学习难度的问题。此时可以按照不同的抽样标准实施抽样,让各抽样小组分别观察其组内的方差水平。在此基础上一旦实施整群抽样,则误差水平可能的变动趋向。也可以就静态指标和动态指标的特点提出问题,让学生分别去对应会计课程的存量指标和流量指标,以学科之间的交叉和连贯激发学生的探究热情。等到学生逐步适应探究式学习这一新的学习模式后,教师就可以布置系统的、需要学生分组分任务在较长时间内才能完成的任务。
2布置问题。
将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。
3迅速完成组内分工。
各组领取任务后,在较短时间内由组长在本组内根据个人的特长确定组内分工(3~5分钟即可)。制定抽样方案、实施抽样、搜集整理数据、查阅资料、分析推断、撰写报告等。对于具有共性并较为重要的知识点,应要求每一个学生都独自完成,不因分工而隔断知识体系。
4收集分工情况,据此串讲知识点,引导学生的工作方向。
教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向?指数体系的确立基于什么考量和出发点?指数体系的确立和因素分析的实际意义在哪里?等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。
5文献检索,初步探究。
学生根据教师的点拨,依据各自工作任务,分头查阅相关文献资料。指导学生利用图书馆、互联网查阅相关的统计公报、统计年鉴、报纸杂志和相关学科的理论知识。并在此基础上对所持问题进行初步探究。资料文献的查阅也是一个循序渐进的过程。学生很可能在探究初期只是查阅了和问题直接相关的表象资料,而忽略了深层探究所需数据的收集,结果出现“头疼医头、脚疼医脚”的局面。
6集中讨论,相互激励,深入探究。
各小组成员在收集相关资料并形成初步意见后,可及时组织大家集中讨论。每个人均可阐述自己观点,对所选用数据资料的可信度,使用方法是否得当等,听取他人意见。讨论过程中可有效实施相互的智力激励,迸发出灵感火花,为进一步发现深层次问题,探究和解决深层问题打下良好基础。
7课堂交流、汇报。
学生在组内讨论探究的基础上,各自完成分工任务。形成统一意见后,应将成果制作成ppt文档。在规定时间内由教师组织集中进行课堂交流、汇报。由各组主讲人通过ppt演示本组工作过程和工作成果,允许组内其他成员加以补充完善。
8教师讲评。
根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。
二探究式教学法在应用中应注意的几个问题。
探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。
探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。
2探究式教学需要教师的及时引导和启发。
在实施这种教学方法的初期,由于学生对新的教学模式一时难以适应,会因各小组组织不力,学生无从下手,不了解整个教学活动的核心内容,而产生畏惧情绪。因而教师要及时地加以引导,为学生指明工作的方向并及时答疑解惑。教师可以利用常规教学课堂平台,也可以利用互联网的相应沟通平台或手机飞信、微信等方式,收集学生意见和问题并及时给予指导,将学生引导到独立探究、合作探究的学习环境中,逐步形成探究式学习的良好氛围。
3探究式教学仍需要传统的课堂讲授模式加以配合。
对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。
4探究式教学课后占用时间较多,容易加大学生的学习负担。
教师要合理安排探究式教学内容。挑选有针对性和实际意义的内容作为选题,并适度调整教材体系中的相关章节。做到教学有重点、探究有实效。把一些容易理解和掌握的知识交给学生自我消化,或由教师使用传统方式串讲带过,把核心知识且具有探究的条件和意义的章节认真组织学生探究学习。避免全面开花、拘于形式,结果造成学生到最后劳神费力、难有所获。
统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。
大数据论文范文(14篇)篇十一
《普通高中英语课程标准(实验)》指出,高中英语课程的总目标是使学生在义务教育阶段英语学习的基础上,进一步明确英语学习的目的,发展自主学习和合作学习的能力;形成有效的英语学习策略;培养学生的综合语言运用能力。对于处在海峡西岸的英语教师更应该深刻领悟体会实践《课程标准》,一切为了学生的发展,真正提高学生的综合语言运用能力,培养实用型海西建设者。以下是笔者平时教学过程中使用新教材后的点滴体会。
一、调查研究。
学生从初中升入高中,进入了崭新的学习阶段,他们对英语充满了新鲜感,对英语老师也充满了好奇心。所以,我们应该抓住这一契机,充分研究学情。首先,笔者对两个班级103位学生进行了问卷调查。调查显示72.8%的学生对高中英语教学内容充满了兴趣;67.3%的.学生对高中英语学习方法不清楚;90.1%的学生对英语老师充满了好奇心。89.6%的学生学英语的目的不明确。调查结果表明,端正学生的学习态度,指导学生的学习方法很有必要,同时,教师与学生的情感交流也与学生学英语的热情程度息息相关。
二、上好高中英语第一课。
大数据论文范文(14篇)篇十二
数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据2.0时代。
2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据3.0时代。
又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者。
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能。
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。
jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
(一)数据分析要树立以人为本的思维。
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾。
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造。
单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。
[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.
[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.
[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.
大数据论文范文(14篇)篇十三
大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。
近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。
对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。
正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。
国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。
2-1营销活动将更科学化。
大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。
2-2营销活动将更个性化。
随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。
2-3企业营销组织机构和人员工作职能将围绕数据展开。
大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。
2-4营销活动将可预测。
大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。
总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。
3大数据时代面临的挑战。
3-1数据的质量问题和数据人才的缺乏。
大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。
3-2数据的复杂化难以管理。
当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。
3-3公众和个人隐私问题日益凸显。
当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。
3-4数据精准性与服务精准性不对称。
尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。
4大数据背景下营销领域伦理问题的解决途径。
大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。
4-1国家应当制定相应的法律法规来约束不法行为。
由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。
4-2通过行业自律来约束自身的伦理机制。
由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。
5结论。
大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。
大数据论文范文(14篇)篇十四
众所周知,铁路向来是春运客运量最高的交通工具。相比去年,由于春运火车票只能提前30天购买,火车票抢票形势更加严峻。
如图所示,2016年春节提前一个月,旅客进入购票高峰。去哪儿网大数据预测,春节将至,2016年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
2016年春运,互联网售票量占总售票量的64.6%,占比超过一半,其中手机app发售车票1.5亿张,售票总量比例由去年的15.7%上升至39%。去哪儿网预测,生长在互联网时代的90后将是20春运的主力军。
在火车用户画像中,选择乘坐火车回家的男女比例分别为52.5%、47.5%,其中90后人群占比高达43%,80后人群为27.8%,两者占比超过70%,成为绝对的中坚力量。
近年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。
一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的'人群比例也达到了10.3%,整体超过了总数的一半。
去哪儿网大数据预测显示,乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
与热门出发地相对应的,重庆、上海、杭州、成都、郑州是往年国内最热门的目的地。这些城市周边铁路、公路、航空线路密集,以此作为中转目的地的旅客也不在少数,抢票难度成几何倍数增加。
非高铁、城际等高速列车的出发地,北京最为热门。不过与高速列车热门出发地不同,紧随其后的重庆、昆明、西安、郑州出发的票量与北京之间相差并不多。
二、最难买航线已经进入抢票模式多数航班恢复全价。
从2016年春运的大数据看,预定高峰期出现在距离春节20天,这一天的预订量创出近期以来的新高,与上个月同期环比增长100%。
大数据显示,2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态。返程高峰则从大年初六即2017年2月2日开始。
三、85后成机票预订主力军天秤座成“空中飞人。
移动互联网时代来临,网上购票已经成为消费者最便捷的预订方式。来自去哪儿网大数据显示,选择乘坐飞机回家的旅客男女比例相近,天秤座在12星座中乘坐比例为9.8%,力压群雄。
家乡越北,越会提前购买回家的机票。去哪儿网机票专家分析,排名前十名的航线,以大机场往小机场飞为主,每天的航班数多在30班以内,是北京至广州这种热门航线航班数的三分之一。
根据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早得多,堪称最难买航线。在去哪儿网平台预订过年前三天回家的机票中,北京至佳木斯这条航线,用户平均会提前36天。从深圳回海口更早,一般提前43天。
四、十条热门空中回家路出炉平均飞行1416公里。
从热门航线看,北京-成都、深圳-重庆、上海-哈尔滨、北京-三亚、广州-重庆、深圳-成都、成都-北京、重庆-广州、北京-哈尔滨、上海-成都,这十条是往年最热门的空中回家路。
去哪儿网统计了往年春运返乡票量最高的50条航线,发现追逐梦想的人们,选择求业、求学城市距离家乡的平均飞行距离是1416.2公里,这几乎是从深圳到西安的里程。
通过去哪儿网平台订票的用户,大多选择在早上7点就坐上飞机,按照平均离家距离1416公里来计算,飞行时间近3个小时,98.8%的用户选择乘坐经济舱。
五、行李多礼物重专车成热门接送工具。
春运期间,95%的旅客会有行李箱、背包以及各种礼品出行,为了能够快速到达机场、火车站,专车接送机/站成为热门出行工具。
去哪儿大数据显示,北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
其中,在预约时间上看,男性一般提前在出发前3.5天-4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天-5.6天。
从出行时段上看,4点-11点为旅客乘车去机场、火车站高峰。其中5-6点出发人群最高,高达6.9%;10-11点又会出现小的高峰,出行占比为5.1%。数据显示,使用接送机/站的用户平均行驶27.2公里,平均时长为36分钟。