教案的编写是为了有条不紊地引导幼儿学习,确保教学的有效性和针对性。以下是小编为初一学生准备的教案范文,希望对大家有所帮助。
人教版四年级数学教案及反思篇一
教科书第25页的`例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。
使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。
乘法的意义和乘法交换律
新授课练习课
讨论法、讲授法
一课时
多媒体
教师出示复习题。
1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?
3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?
上面这些题哪些可以用乘法计算?为什么?
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:5×6=30(个)
解答这道题用乘法计算简便还是用加法计算简便?
求几个相同加数的和的简便运算,叫做乘法。
在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。
注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1
一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0
2、教学乘法交换律。
让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)
比较一下这两个乘法算式,有哪些相同?有哪些不同?
学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。
用字母表示:a×b=b×a
1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。
2、做练习五的第3、4题。学生独立做完后,再集体核对。
小结:今天我们学了什么?什么叫乘法的交换律?
附板书:乘法的意义和乘法交换律
用加法计算:5+5+5+5+5+5=30(个)
用乘法计算:5×6=30(个)
求几个相同加数的和的简便运算,叫做乘法。
在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。
注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1
一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0
两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。
用字母表示:a×b=b×a
人教版四年级数学教案及反思篇二
1、结合具体情境,学会用字母表示数,能用字母表示运算律和有关图形的计算公式。
2、探索用字母表示数的过程,发展抽象概括能力。
体会用字母表示数的意义,掌握用字母表示数的方法。
引导学生经历抽象概括(即符号化)的过程。
一、儿歌导入
【课件出示】
1只青蛙1张嘴
2只青蛙2张嘴
3只青蛙3张嘴
4只青蛙4张嘴
…… ……
师:相信大家还能说下去。但老师现在想请大家仔细观察,这两列数有什么特点?
生1:前面是1,后面也是1;前面是2,后面也是2,……
生2:前面的数和后面的数一样的。
师:前面的数表示什么? (青蛙的只数)
后面的数表示什么? (有多少嘴)
生:青蛙的只数等于嘴的数量。
师:那n只青蛙有多少张嘴?
【课件出示】n只青蛙n张嘴
生:因为嘴的张数和青蛙的只数是相等的。
师:在这里,n可以表示很多数,可以是1,2,3,也可以是100,1000,等等。看来用字母表示数真的很方便。这里我们很容易就看出青蛙的数量和嘴的数量是相等的。
师:今天我们就来学习用字母表示数。
【板书:用字母表示数】
二、拓展探究
情境一:摆小棒
师:摆一个三角形需要几根小棒?(3根)可以这样列式:1 3
如果你想摆2个这样的三角形需要几根小棒,怎样列式?如果这样摆3个呢?4个呢?
生:摆2个三角形用小棒根数为2 3
摆3个三角形用小棒根数为3 3
摆4个三角形用小棒根数为4 3
【板书】三角形的个数小棒根数
1 1 3
2 2 3
3 3 3 …… ……
师:仔细观察,再思考,若摆a个三角形需要几根小棒呢?【板书:a】
生1:三角形的个数3就是小棒的根数
生2:摆a个三角形用小棒的根数为a 3【板书:a 3】
师:在这里,字母a可以表示那些数?
生:a可以是1,2,3,……,100……,1000,……
师:这些数我们叫做自然数,刚才的1 3,2 3,3 3,……,这么多的算式,只用a 3就把刚才的式子的式子表示清楚了,看来字母用字母表示数真的变简单了,学习数学就是为了把复杂的问题变简单。
师:观察,能简便的是哪种运算符号?
生:乘号。
情境二:妈妈的年龄
(1)师:上个星期日就是母亲节,我们的朋友淘气出了一个与妈妈有关的问题给大家。
课件出示:
淘气说:妈妈比我大26岁。那么当我1岁时,妈妈几岁?2岁时,妈妈几岁?3岁时?
【板书】
师:观察妈妈和淘气的年龄,什么在变,什么不变? 生:1,2,3,淘气的年龄在变,妈妈的年龄中+26没有变。
师:为什么1,2,3会变化,而+26不变呢?
生:说明淘气在长大,年龄变化了。妈妈比淘气大26岁是不会变的。
师:x+26中还可以看出妈妈与淘气的年龄差是——生:26。
师:x+26不仅可以表示妈妈的年龄,还可以看出妈妈与淘气的年龄差是26。
淘气:你觉得x会是哪些数?
生可能会随便说一个数字,教师随机应变。
小结:取值要符合生活实际。
(2)小组合作
师:淘气比妈妈小26岁,当妈妈27岁时,淘气的年龄?28岁时?29岁时?请你根据之前的列表方法,用自己喜欢的字母来表示淘气的年龄。
鼓励学生先思考,再参照黑板上的表格进行列表解答淘气的年龄。
师:在这里y可能是哪些数? 师:字母变了,字母的式子变了。但是他们之间的关系却没有变化。年龄差还是26岁。数学就是研究千变万化中不变的规律。
三、回顾总结
师:今天这堂课我们学习了用字母表示数,也明白用字母表示数会给我们带来方便,含有字母的式子不但可以表示某一数量,还能从中看出两个量之间的关系。接下来我们来试一试用字母表示数。
【试一试】
1、面式子能简写的用简便方法表示
x—5 1 b x y 9+3 c 4 4
2、 1只手有5个手指;
2只手有10个手指;
n只手有个手指。
3、我们每76年才见到一次哈雷彗星,在公元s年出现后,下一次出现将是公元年。当s=1986时,再一次出现将是公元年。
4、如果用c表示正方形的周长,a表示边长,那么正方形周长公式可以写作:
四、再次感受字母“简”
1、用字母表示学过的有关图形的计算公式
2、用字母表示你学过的运算律
五、巩固练习
师:完成作业纸(即书本练一练第1、2题)
人教版四年级数学教案及反思篇三
1.使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2.使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
二、设疑引探,自主建构
1.操作感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
2.分类建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
3.交流质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、巩固练习,深化认识
1.试一试。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2.做想想做做第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3.做想想做做第3题。
学生独立完成判断,并说明理由。
四、全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、举例检验
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
人教版四年级数学教案及反思篇四
:1、在有趣的计算中培养学生的估算策略。
2、在解决问题中进一步熟练小数的'运算。
一、解决问题。
问题1、cai-1呈现p51的第1题的信息。
1、你根据这个信息能提出什么数学问题?
2、列式解答。
问题2、第2题,
1、师生一起解读统计表。
2、学生独立列式计算。
问题3、学生独立列式计算,个别辅导。
二、估一估,算一算。
p52的第4题。
1、示范解决。
2、学生任选一行或一列计算。
3、汇报你是怎样选两个乘数的?探讨估算的策略。
第5题,估一估,算一算。
可以采取游戏的方法,1人说数,另一人说需要多少钱。
人教版四年级数学教案及反思篇五
一、情境引入:
师生谈话引出生活中的乘法话题。
二、展示目标
1.经历学习三位数乘两位数乘法计算的过程。
2.掌握三位数乘两位数的笔算方法,能用竖式计算三位数乘两位数的乘法。
三、自学与交流研讨
1.出示例1。
让学生说一说怎样列式,并说说为什么这样列。
2.学生自己试着用竖式计算,指一人板演。算完后用计算器验算结果是否正确。
3.完成后说说是怎样算的。
同桌说说后,在全班说说。
4.用计算器验算结果是否正确。
四、质疑答疑
五、专项练习
用竖式计算下面各题。
368×19=292×46=109×37=
六、课堂小结:这节课你有什么收获?
第二课时
1.在自主尝试计算、交流等活动中,经历学习乘数末尾有0的三位数乘两位数简便算法的过程。
2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。
3.在探索计算方法的过程中,感知数学知识的内在联系,培养知识迁移和自主学习的能力。
一、情境的创设:
教师谈话,引出旅游团就餐问题。
二、展示目标
1.经历学习乘数末尾有0的三位数乘两位数简便算法的过程。
2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。
三、自学与交流研讨
1.观察情景图说说了解到的信息。
2.分别计算选择两种自助餐各需要多少元钱。
3.学生试着笔算乘数末尾有零的乘法。
找不同选择的同学各一人板演,其余的写在本上。
交流计算的方法。
重点交流乘数末尾的0的处理方法。
四、质疑答疑
五、专项练习:试一试。
先估计积是几位数再口算。
六、课堂小结:这节课你获得了哪些知识?
七、综合练习
采用书中的练习题。
第三课时
(1)结合具体事例,经历选择合适的估算方法进行估算的过程。
(2)能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。
(3)估算、计算的过程中,体会估算的实际意义,培养估算的习惯,培养数感。
设计意图教学是一门需要不断更新和反思的艺术,只有牢牢搭住时代发展的脉搏,与时具进,才能教给孩子更多的东西,这朵艺术之花才会永不凋谢。
一、情境的创设:
谈话引入(也可用其他形式引入)
二、展示目标
1.选择合适的估算方法进行估算的过程。
2.能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。
三、自学与交流研讨
1.让学生看图并说出图中的信息,再提出问题:估算这列火车大约有多少个座位。
2.展示:说说这列火车大约有多少个座位,你是怎样估算的。先小组内交流,再班级交流。
四、质疑答疑
五、专项练习
试一试
六、课堂小结
这节课你有什么收获?
七、综合训练
采用书中练一练的习题。
人教版四年级数学教案及反思篇六
1.学生复习条形统计图
师:同学们前几天我们栽了蒜苗,还记录了它在15天内生长情况的数据,昨天,大家把自己栽种蒜苗的数据进行了整理,制成条形统计图,举在手里,展示一下。
展示一学生的条形统计图
生汇报图中数据
2.提出问题,学生探究作图
师:如果我们还想了解它从第3天到第15天整个的生长变化的情况,该怎么画呢?老师这有几种统计图,请你仔细观察,看哪一种更合适。(师出示条形统计图、扇形统计图、折线统计图)生任选其一。
能不能在你作的条形统计图上作一些修改或补充,把它变成这种统计图呢?
学生在小组内先讨论,再在图上试一试。
学生作图后展示,汇报作了哪些修改,表示什么意思?
3.生成新知,揭示课题
提醒同学们:变成真正的`折线统计图还要把原有的条形统计图擦掉
揭示课题:折线统计图
1.读点
师:图中的点表示什么呢?
生说点的意义,(课件显示并标数量)
2.读趋势,
师:同学们都读出了点所表示的数量(板书数量),由点连成的线呢?
生说表示蒜苗从矮长到高的生长趋势。
读局部趋势,从第几天到第几天长得快,从第几天到第几天长得慢(板书趋势)
3.估计
根据这一趋势请你估计蒜苗第10天大约长到多少厘米?
4.预测
预测第20天大约长到多少厘米,并说说你的想法。
师:我们会读折线统计图了,那你会画折线统计图吗?怎么画呢?
出示笑笑蒜苗生长情况统计表,你能将它制成折线统计图么?
学生独立绘制笑笑的蒜苗生长情况折线图
汇报评价
说说图中的信息
对比自己与笑笑的蒜苗生长趋势,哪些地方相同,哪些地方不同
1.出示北京地区20xx年5月新增病人的统计图
(1)从上图中你能说说非典新增病人的变化趋势吗?
(2)你能与同学说说产生这种变化趋势的原因吗?
2.出示小玲家室内气温的变化统计图
(1)小玲每隔()时测量一次气温
(2)这一天从8:00到16:00的气温从总体上说是如何变化的?
(3)请你再提出一个数学问题,并尝试解答。
3、出示百货大楼一年销售冰箱的总数量统计图
根据趋势,作出决策
下课后收集生活中的折线统计图,下节课交流
人教版四年级数学教案及反思篇七
“空间与图形”包括:位置与方向,三角形。其中,位置与方向是复习利用方向(角度)与该点到原点的距离来确定平面内一个点的位置的方法。三角形,是复习三角形的特性、分类和内角和,重点是区分几种不同三角形。
2、发展空间观念,巩固概念与技术。
3、主动参与复习,增进应用空间与图形知识的信心。
一、明确任务
1、揭题:空间与图形
2、议:空间与图形的知识有哪些?
二、复习相关知识
1、位置与方向
1)说出台风中心的`位置。
2)说出确定位置的方法。
板:偏方向
方位角度距离
3)汇报p126-7
2、三角形
1)自己说说三角形的知识。
3)汇报p127-8
三、练习
人教版四年级数学教案及反思篇八
教学目标:
1,通过人民币和外币的兑换,体会求积,商近似值的必要性,感受数学与日常生活的密切联系。
2,能感受按照要求求出积,商的'近似值。
基本教学过程:
?一、创设情境:呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。
二、自主探究,创建数学模型
首先引导学生进行解答。由于货币的最小单位一般是分,以元为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。
三、巩固与应用
1、试一试,可以让学生用计算器算出得数,然后根据得
数按要求用四舍五入法求出近似值。
2、练一练:p71/1,2,3,4
第1题:这是人民币和港币的兑换,12.51。07,超过了11元港币;也可以用兵11.07,不到本世纪末2元,因此11元港币不够。
第2题:这是人民币和日元的兑换,要注意的是:50007.09所得到的近似值还需要去乘100.
第3题:这是欧元换人民币,50009.15=45750(元)不需要
近似值.
第4题:这是求近似值在其他问题中的应用,在这里不能四舍五入,而要根据具体情况灵活应用,因此,本题培养了学生灵活解决实际问题的能力.
四、总结。
根据学生的练习情况进行小结.
教学反思:这部分内容是教学的难点,学生接触比较少,掌握起来比较困难,要进一步理解算理。